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Psychophysical evidence indicates that, in the human retina, the size of the spatial-summation area decreases as
illuminance increases. Such a relationship would be beneficial for the detection of spatial contrast in the presence
of photon noise. We analyze an image-processing mechanism in which the area of & strictly positive point-spread
function varies inversely with local illuminance while its volume remains constant. In addition 1o its expected ef-
fect of improving spatial resolution as iluminance increases, this mechanism also yields center-surround antago-
nism and all other manifestations of bandpass filtering and accounts for Ricco’s law and Weber's law—including
the failures of both laws as a function of test conditions. The relstionship between this mechanism and lateral in-

hibition is analyzed.

1. INTRODUCTION

Many psychophysical and physiological experiments can be
interpreted as showing that light falling upon any one point
of the retina creates an excitatory effect at neighboring points
and that this lateral excitation combines additively with the
direct excitation produced by light itself.! Psychophysical
evidence also indicates that the extent of lateral excita-
tion—the size of the spatial-summation area—increases as
retinal illuminance decreases.23

One obvious and undesirable consequence of spatial sum-
mation is, in effect, to blur the neural image, and so it is nat-
ural to look for compensatory benefits of the process. A
plausible suggestion is that intensity-dependent spatial
summation is an adaptive response to the intrinsic noisiness
of light. If the effective flux density in an image is / (absorbed
photons/unit time)Ainit area, then both the mean and the
variance of the actual quantum catch per unit time over an
area A equal JA. This statistical relationship imposes a
fundamental constraint on spatial contrast detection.

Suppose that a change in illuminance from/ ol +clisto
be detected with an error rate of the order of 0.001 and that
the visual system is a perfect detector limited only by quantal
fluctuations. Then the effects of the incident quanta must
be summed over an area A large enough that*

1A > 10/c2,

Thus, to detect a 100% contrast change (¢ = 1) lasting one
time unit, /A, the total number of quanta whose effects are
summed during one time unit must be greater than 10. To
detect a contrast of 1% requires that /4 > 100,000.

Individual human photoreceptors collect quanta over areas
of the order of 10-% mm? and integrate their quantum catch
over temporal durations of the order of 0.1 sec, Taking ab-
solute threshold to be 100 quanta/0.1 sec at the cornea, spread
over a retinal area of the order of 10-3 mm?, and assuming that
10% of corneal quanta are effectively absorbed by photopig-
ment, I at the absolute threshold of human vision is of the
order of 104 (quanta/0.1 sec)/mm?. Therefore the value of {4
for an individual receptor at absolute threshold is only about
1/100th of that needed to detect 100% contrast reliably and
about 1076 that needed to detect 1% contrast. Thus, if no
spatial summation occurred, a 100% contrast could be de-

0740-3232/85/101769-18$02.00

tected only when retinal illuminance reached 100 times the
absolute threshold level (a statement that is self-contradic-
tory, since the absolute threshold is a contrast detection), and
1% contrast could not be detected until the illuminance was
of the order of 108 times absolute threshold (that is, around
1cd/m2). Spatial summation can thus be seen as a device for
pooling the retinal quantum catch over areas larger than a
single receptar, allowing reliable contrast detcetion at scolopic
and mesopic light levels. And the fact that the summation
area becomes smaller as illuminance increases can be inter-
preted as an adjustment that tends to keep the summation
area A as small as possible at cach light level /, subject to a
requirement of the form IA > 10/c2, thereby minimizing
needless reductions in spatial resolution.

This noise-compensation interpretation of spatial sum-
mation is well known, especially through the seminal work of
Rose.® However, it does not seem to be widely recognized that
an adaptive spatial-summation mechanism can automatically
create effects resembling a number of well-known visual
phenomena not generally associated with photon noise, in-
cluding edge enhancement (Mach bands) and other band-

_pass-filter effects usually attributed to lateral inhibition. We

have analyzed a model visua! system based on the following
assumption: Each point in the retinal image gives rise to a
nonnegative point-spread function whose height is directly
proportional to image intensity at that point and whose vol-
ume remains constant—so that the area covered by the point
spread varies inversely with local image intensity. The output
image is the sum of the point-spread functions generated
around each input point. We refer o this operation as “in-
tensity-dependent spatial summation.”

This simple operation proves to have a surprising number
of immediate consequences that resemble important features
of human vision. 1t creates Mach bands at edges, sombrero-
shaped impulse responses, and a low-frequency falloff in the
spatial contrast-sensitivity function. |lIn fact, when the
point-spread function is Gaussian, it yields the same con-
trast-sensitivity function (CSF) as a linear lateral inhibitory
model whose point-spread function is the negative Laplacian
of a Gaussian, as in the theory of Marr and Hildreth$] In
addition, the same assumption implies Weber’s law (including
its failures as a function of light intensity and target size) and
Ricco's law (including the fact that the area of perfect spatial
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“summation shrinks as the background light level increases)
and causes visual acuity (the high-frequency cutoff of the
CSF) to increase as the square root of mean luminance.”
These consequences are robust under changes in the exact
shape of the point-spread function (i.e., square, triangular,
Gaussian, etc.) and depend only on the fundamental as-
sumption that the area under that function is inversely pro-
portional to local image intensity.

Finally, it is noteworthy that this spatial-summation
mechanism mimics ot only the main cffects usually attrib-
uted to lateral inhibition, such as Mach bands, but also the
apparent dependence of lateral inhibition itself on the mean
luminance level. For example, the response to small spots has
a distinct sombrero form only when the spot is superimposed
upon & relatively high-intensity background. When back-
ground intensity is low the “negative” brim of the sombrero
becomes vanishingly small, as though lateral inhibition failed
at low light levels—a result that has heen reported for retinal
ganglion cells®® and that is also found in psvchophysical

-measurements of spatial contrast sensitivity.!91! Here,
however, there is never any inhibition—all the model’s con-
sequences are due to changes in the width of a nonnegative
point-spread function. A similar realistic dependence on
background intensity also appears in the model’s response to
other stimulus configurations commonly used in psycho-
physical experiments. For example, the background intensity
level beyond which detectability of a target obeys Weber’s law
shifts upward as the area of the target decreases.!

Organization

In this paper we describe the basic mathematical properties
of image processing by intensity-dependent spatial summa-
tion. Our purpose is to introduce a theoretical too) that may
prove useful in visual system modeling and also in image-
processing technology. In Section 2 we define the simplest
intensity-dependent spatial summation (IDS) operator and
derive some general results used repeatedly later on. In
Sections 3 and 4 we describe the effects of applying this IDS
operator to images commonly used in psychophysical mea-
surements of spatial contrast sensitivity, such as edges, spots,
and gratings. By and large, these effects are qualitatively in
agreement with the results of psychophysical experiments,
but we point out some significant differences and comment
on their implications. We also note similarities between the
consequences of IDS processing and physiological results
frequently cited as demonstrations of lateral inhibition in the
retina. In Section 5 we discuss the relationship between IDS
operators and linear operators commonly employed in visual
theory and the potential value of IDS operators in artificial
image processing. In Section 5 we also describe a generalized
IDS operator that retains the basic properties of the model
introduced in Section 2 and allows a better fit to psycho-
physical data.

Although IDS is in a sense motivated by photon-noise
considerations, this paper focuses on its consequences for
deterministic input images, for which analytic results can be
obtained relatively easily. That is not so for Poisson noisy
images, which apparently must be approached by simulation
methods and properly form the subject for another paper.

T.N. Cornsweet and J. 1. Yellott, Jr.

2. THE INTENSITY-DEPENDENT SPATIAL-
SUMMATION MODEL

Figure 1 illustrates the basic ideas of the IDS model. A two-
dimensional input image (here, a sharp edge) is recorded by
an array of photoreceptors, and they feed into a summation
network thet performs the IDS operation. That operation
consists of two stages. First, each receptor gives rise to a
nonnegative point-spread function whose center height is
directly proportional to the intensity of the input image at that
receptor and whose volume is constant—so that its area (that
is, the volume divided by the center height) is inversely pro-
portional to the input intensity. Second, these point-spread
functions are added together to create the output image.
That image is then read out over an array of output chan-
nels—one for each receptor location.

Ln this section we define the general class of IDS operators,
give an exanple based on Gaussian point-spread functions,
and derive some useful technical results. In Section 3 we work
out the response properties of IDS models for a variety of
one-dimensional input images, and in Section 4 we do the
same for two-dimensional inputs. Whenever possible we
derive the general properties that characterize the model’s
responses independent of the exact shape of the point-spread
function. Then in every case we give the specific form of the
response for the special case of a Gaussian point-spread
function and illustrate the profile of that response graphi-
cally.

For mathematical convenience, our analytic treatment as-
sumes that the photoreceptors are infinitely small relative to
the size of the input and the output images. ‘That is, we desl
with the continuous case, in the same spirit as theories that
model retinal processing by a convolution of continuous ret-
inal images with continuous impulse responses. This con-
tinuous approximation to the discrete nature of actua! retinas
and man-made image processors provides realistic results up
to input image intensity levels that would cause the point-
spread function to become narrower than a single receptor or
a single pixel.

Notation and Assumptions

I(x,y) denotes the input image intensity at point (x, y); O[l(x,
¥)1(p. g) denotes the output image intensity at point (p, q)
when the input image is /(x, ¥). (p and q refer, respectively,
to the x and the y coordinates in the output image plane.)
When the input image is obvious, we occasionaily denote the
output image simply as O(p, q).

The basic idea of the model is that each input point (x, y)
contributes a nonnegative point-spread value to every output
point (p, g), the size of the contribution depending on the
input intensity value /(x, y) and the distance from (x, ¥) to

.(p, q). Thus we need to specify a spread function of the

general form Si{(x, y), (p, ¢}, 1)} that gives the contribution
from (x, y) to (p, ¢) when the input intensity at (x, y) is ]. We
assume first that

(1) S is nonnegative.

(2) 8 is spatially homogeneous and circularly symmetric.
(That is, S can be written as a function of twe real variables
in the form S{{(x — p)2 + (v — q)?], 1}.) ’

Next we formalize the fundamental assumption that the
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Fig. 1. Schematic diagram of the IDS model. From top to bottom:

input image profile (here. a sharp edge); photoreceptors; photoreceptor

point-spread funetions (for the Gaussian case of the model); output channels (arrows): output image profile (dots).

area covered by the point-spread function around each input
point varies inversely with the input intensity at that point.
To accomplish this we assume that the center height S(0, )
is directly proportional to the input intensity I, while the
volume under S remains constant for all nonzero values of
I:

Q) Slx=pl+(-g?, I =Tx S| x {(x —p)2+ (y
- q)2]! ”

For any spread function S, integrating the right-hand side
of assumption (3) over p, g vields a constant value V, that is
independent of 7, while the height at the center li.e., S(0,D)
equals I X §(0, 1). So the equivalent area under the point-
spread function around any input point (volume divided by
center height) is 1/] times the constant V./5(0,1). The choice
of the volume constant V, is arbitrary; it simplv sets the value
of the model's baseline response to uniform-field inputs, as
is shown below in Theorem 1. We take this to be unity.

(4)  The integral of S{{(x — p)2 + (y — ¢)*], I aver the p,
q plane equals 1.0. .

Given assumption (4), the remaining constant 1/S[0, 1)
equals the equivalent area of the point-spread function when
the input intensity 7 = 1. This parameter determines the
numerical values of the point-spread areas for all input in-
tensities and needs to be chosen appropriately to fit the model
to psychophysical data. We make no specific assumption here
about its value since that will depend on the units used to
measure retinal area and light intensity.

In view of assumption (3), the point spread S is really a
function of a single variable, so we can suppress the redundant
intensity variable and express the fundamental assumption
of the model az follows.

The point spread from input point (x,y) to output point
(p,q)is

T(x, ) X Sl (x, ¥} X [(x = p)2 + (y — q)2]},

where I{x, v} is the input image intensity at (x,y) and S is
a nonnegative real function for which

‘f_: j:: S(p?+ qHdpdg = 1.

Different cases of the model can then be created by different
choices of the basic spread function S, i.e., S may be Gaussian
(as in the example below), square, exponential, etc. However,
as we shall see, the exact choice makes little difference.

Note that the functional form of the spread function re-
mains constant as J(x, y) varies. For any input intensity / the
point spread takes the form I X S(Ir?), where S is a fixed
function and r is distance from the input point. Thus the
effect of the input intensity at each point is simply to rescale
the spread function, leaving its basic form unchanged. As will
be seen below in Theorem 3 and subsequently, this is an im-
portant feature of the model.

Finally, we assume that the output image is the sum of the
point-spread functions:

(5) omx.y)](p,q)=f_: ‘f_il(x.y)

X SH(x,y) X [(x = p)2+ (y — ¢)?)jdxdy.

Assumption (5) entirely captures the notion of an IDS oper-
ator. .

Example: The Gaussian Case

Suppose that S is the Gaussian function

S(x2+ y2) = (1/27) X exp{(-1/2) X (x? + v2)]

corresponding {o the joint probability density function (pdf)
of two independent normal random variables, each with mean
zero and variance one. Then the point spread around an
input point (x, y) with intensity I (x, y) is

[F(x, y)/27] X expl{(~1/2) X I(x, y)(x - p)2 + (y — q)?l,

i.e., a bivariate normal density function, centered at that point,
corresponding to the joint pdf of two normal random variables,
each having variance 1//. Figure 2 illustrates this point-
spread function for several values of /. We use this example
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Fig. 2. Point-spread functions of the Gaussian case of the IDS nmodel
shown for four input intensities.

throughout to illustrate the model. Mathematically it is
uniquely convenient because the Gaussian is the unly circu-
larly symmetric function that is also separable. However, as
was noted earlier, the effects of IDS are largely independent
of the exact shape of the spread function. To demonstrate
this, our theorems are proved for arbitrary spread functions
that satisfy assumptions (1)-(4).

This Gaussian version of the model has a point spread
whose effective width is 6/y/7. Assuming a photoreceptor
width of Y;5o-deg visual angle (2 um), the point spread would
shrink to a single receptor when I becomes greater than
800,000. We have confined our examples 10 / values less than
10,000 to keep the results of our continuous analysis realistic.
In the figures below, the spatial units are degrees. The graphs
show output image profiles over a retinal distance of 42 deg,
plotted at 150 points/deg.

Preliminary Results
An easy way to see that the model is nonlinear is to note the
following.

Theocrem 1
The output to any nonzero uniform field is the uniform field
L0. [Thatis, whenI{x,y)=1> 0,0(p, ¢) = 1.}

Proof
Put I(x, y¥) = I in assumption (5) and make the change of
variableu = (x — p)+/T,v = (y — ¢)+/1. (Note: The output
to a zero-intensity uniform field is again a zero-intensity field.
Thus it might seem that there is a discontinuity in the uni-
form-field response. In practice this is not so, because any
real input image is limited in spatial extent, whereas Theorem
1 assumes a truly infinite uniform field. For uniform-field
inputs of any finite size, the response can be made as near zero
as desired by making the input intensity sufficiently low.)

The physical meaning of Theorem 1 can be understood in
the following way. Because the volume under the spread
function at each point is constant and independent of the
input intensity, the total output of the system is independent
of its input—the effect of any input image is not to change the
total amount of output but only to change its spatial distri-
bution. Since a spatially uniform input image must generate
a uniform output image, it follows that the output amplitudes
corresponding to all uniform input images must be iden-
tical.

The next theorem simply documents a property built in by
assumption (2): The IDS model is invariant under transla-
tions and rotgtions.

T.N. Cornsweet and J. 1. Yellott, Jr.

Theorem 2

If the input image is translated or rotated by any amount, the
output image is unchanged except for translatior or rotation
by the same amount.

Proof

For translation: To represent a translation of the output to
image /(x,y) li.e., O/ (x,y)}(p — j,qg — k)| putp = pP—Jj,q=
¢ — k in assumption (5) and make the change of varisble u =
xt+j,v=y+k This yields

T Hu—-j,o—k)yXSjlu—j,v-k)
X [(u = p) + (v = ¢)?Jidudo,

which is the output for the translated input imagel(x — J, v
= k). (Note: Tosimplify notation we omit the limits of in-
tegration in this expression and those below. Unless other-
wise noted, these can always be assumed to be the entire
plane.)

For rotation: To represent a rotation of the output to [ (x,
¥) by a counterclockwise angle # we substitute p cos 6 + g sin
6 for p and q cos 6 — p sin 6l for g in assumption (5) and make
the change of variable x = u cos ! + v sin f, y=vceosfl—u—
sin 6. Expanding the squared terms, we get

JS Hu cos 8 + v sin 6, v cos 8 — u sin 0)
X S{I(u cos 0 + v sin fl, v cos 8 — u sin 0)
X [{u=p)2+ (- ¢)idudv,

which is the output for the rotated input image /{x cos + y
sin 8,y cus ) — x sin #).

The final theorem of this section describes the effect of
multiplying all the input image intensities by a common fac-
tor—i.e., the effect of changing the input image from I(x, v)
toc X 1(x, v), as would happen with the retinal image of a rean)
scene if the illumination falling upon that scene changed.
This simple theorem is really the mathematical heart of the
model: From it we can prove that Weber’s law holds at edges,
that Ricco’s law holds for spots on & dark background, and that
visual acuity increases in proportion to the square root of the
mean luminance level—all regardless of the specific form of
the point-spread function.

Theorem 3 (Scaling Theorem)
For every positive constant ¢ and every input image /(x, y)

Olel(x,y)(p, 9) = Ol {x/\/e, yNVOlPVe, gve). (1)

In words, this means that the effect of multiplying all the in-
tensities in the input image by a constant ¢ is the same as first
expanding the original image spatially by a factor \/¢ along
both axes, then applying the summation operator in as-
sumption (5) to that image, and finally shrinking the output
image back to the original size. Thus, for example, each
spatial frequency f in the image c/(x, y) is treated like fre-
quency f/+/c in the image /(x, y).

Proof
The right-hand side of Eq. (1) is

T 1 /%, }'/\"T)S!](x,’\/?, y/NC)
X {{x = pv/e)2 4 (v = /o) 2idxdy.
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Making the change of variable u = /e v = y/\c, we ob-

- tain
I clu, 0y X Slel (v, v) X [(t = p)2+ (v = ¢)?)idude,
which is the left-hand side of Eq. (1).

3. RESPONSES TO ONE-DIMENSIONAL
PATTERNS: EDGES, BARS, AND GRATINGS

Suppose that the input image is intrinsically one dimensional,
e /(x.~}=I(x). (Becausc of Theorem 2, itis sufficient to
consider only vertical une-dimensional inputs.) Making this
substitution in assumption (), we have

OlI:Np. @) = [ VT £ VIDISH(: ~ pIVTE)?
O = @WI(x))Adydx.

Now in the inner integral (over v) we make the change of
variable v = (y — q)\/7(x) to obtain

Ol (x))(p) = £° VITO$I(x - p)VvIide, (@)

where § is the line-spread function corresponding to S, given
by

" S(x2 + y2)dy. (3)

$(x) =

It is easily seen that § is always nonnegative, symmetric about
the origin, and integrates to I. In the Gaussian example we
have

$(x) = fm (1/2mexp[(—1/2)(x2 + y)]dy

= (I/ﬁ)exp[(—]/?)x?],

so the line spread arcund a line with intensity / is 3 normal pdf
centered on the line, with variance 1/7. Thus for the Gaussian
case the response to one-dimensional patterns is given by

olw) = (" (WVITNVET)
X exp[(=1/2)I(x)(x — p)?]dx. 4)

Step Response

Suppose that I(x) is an edge of the form 7(x) = J for x <0, I(x)
=T+ Dforx >0 (that is, a step). Then, for the Gaussian
case, Eq. (4) yields the response

Olp) = N[x(J + D)2 + N[-x\T}, (5)

where N is the cumulative normal distribution function:
Niz] = f (1/3/27)expl(-1/2)x"}dx.

Figure 3 shows the Gaussian-model step response |i.e., Eq. (5)]
for a number of edges. These edges differ in illuminance (that
is, 1), but the ratio of the lighter to the darker side is the same
for all—i.e., the ratio (/ + D)/1, and consequently the Weber
fraction D/I.is a constant. (Here D/I =10.) 1t can be seen
that the response displays Mach hands symmetrically located
on either side of the step. At the step itself the response is
always 1.0

To understand intuitively how Mach bands can be created

Vol oo No [ Octoher 1985, Opt. Soc. Am. A 1773

Fig.3. Fdge-reaponse profiles. The inpuf image was a step at zero
from intensity I tof + D. [/1) = 10 in all cares. Curve 1,/ = 0.1;
curve 2,1 = I; curve 3,1 = 10; curve 4, [ = 100.

by a purely positive point-spread mechanism (i.e., without
lateral inhibition) it may be helpful to reexamine Fig. 1,
hearing in mind that the output at each point is the sum of the
spread functions above that point. As the edge is approached
from the left (i.e., from the low-intensity side). the output
decreases below the haseline level becsuse there is less spread
excitation coming from receptors on the right-hand side of the
edge, which have narrower spread functions. Conversely, as
the edge is approached from the high-intensity side, the out-
put rises above the baseline level because of the extra excita-
tion contributed by receptors on the low-intensity side, which
have wider spread functions.

A second important feature of the response profiles in Fig.
3 is that the cffect. of increasing I is to move the peak and the
trough of the Mach bands closer to the edge itself, but their
amplitudes remain the rame. This is a consequence of the
fact that the input edges here all have the same Weber fraction
D/I. Analysis of Eq. (5) shows that the peak of the positive-
going Mach band occurs at Pmax = [(1/D)og(1 + D/N))172,
and its value there is

O(Pmax) = N|[(1 + I/D)log(1 + D/1)}1/2.
+ N{=[(I/D)log(1 + D/N))/3,

which is a function only of the ratio D/I. The trough of the
negative-going Mach band occurs at Pmin = —Pmax, and the
output value there is 1 ~ [O(Pmax) — 1] (i.e.. the peak is as far
above the baseline response 1.0 as the trough is below it.)
Thus the peak and trough values of the step response depend
only on the Weber fraction D/I. Assuming a downstream
detector mechanism that registers a perturbation in an oth-
erwise uniform field when the output value at any point. differs
from the baseline 1.0 response hy more than some threshold
value, it follows that the Gaussian version of the model implies
Weber’s law for edge detection.

This result is not unique to the Gaussian case of the IDS
model. Instead it holds for all cases [i.e., for all choices of the
point-spread function S that satisfy assumptions (1)-(4)].
The following theorem shows why.

Theorem 4
Suppose that I(x, y) is a straight edge separating a uniform
field of intensity I from a field of intensity I + w:l. Then the



1774 J. Opt. Soc. Am. A/Vul. 2, No. 10/October 1985

- maximum and minimum values of the output to /(x, ¥) are
independent of I and depend only on the Weber fraction w.

Proof

Because of Theorem 2 it is sufficient to consider only vertical
edges of the form /(x,y) = I(x} =1 (forx > 0); =1 + wl (for
x = 0). Suppose that V(x) is a vertical edge image defined
by V(x) =1forx <0;=1+wforx 2 0. Assume that the
maximum value of the output O[V(x}]{p) occurs at p = Pmax
and that the minimum value occurs at p = Pmin. Let /{x)
=]forx <0and+ w/forx 20. Then/(x)=1X V(x),and
8o from Theorem 3 we have

O[/(x)](p) = O} X V(x)](p)
= O|Vx/vVDIeVI) = O[V(x)(pV1).

{The last equality holds because here V (x/v/T) = V(x).] The
maximum value of the last expression in this line occurs at
pv/1 = Pmax and its minimum at p VI = Pmin, and so the
maximum (minimum) output to /(x) occurs at p = Pmax/\/T
(p = Pmin/+/7) and has the same value there that the output
to V(x) has at Pmax (Pmin).

Two other features of the Gaussian-case step response can
also be shown to be common to all IDS models: the fact that
the output value at the step itself is always 1.0 and the fact
that the locations of the peak and trough of the response move
closer to the step as the baseline input-intensity level J in-
creases. (The latter is true under the conditions that pre-
vailed in Fig. 3, i.e., the edge separates fields of intensities /
and I + D, and the Weber fraction D/ remains constant while
I changes.)

To prove the first point, suppose that the input image isa
vertical edge of the form /{x,y) = I forx <0and/ + D forx
> 0. We are concerned with the value of the output image
O(p, q) along the vertical axis p = 0, and since it is sufficient
to consider only a single point, we pick the origin [i.e., the point
(p,g) = (0,0)]. Then, from assumption (5), the output for an
arbitrary spread function S is

0(0,0) = f_: -r_(:!XSlI[xzi—y?]}dxdy

+f_: J::(]+D)XS[(I+D)[x2+y2]}dxdy.

We know that I X S{I{x2 + y2]} is a circularly symmetric
function whose integral over the entire x, y plane is 1.0, and
the first integral in the expression above integrates this
function over the half-plane x < 0, 50 its value must be 0.5.
The same argument applies Lo the second integral, and con-
sequently the entire expression equals 1.0.

Now to show that the distance from the edge o the locations
of the maximum and minimum output values decreases as /
increases, we can use the fact, shown in the proof of Theorem
4, that if Pmax is the location of the maximum when the edge
separates fields of intensities 1 and 1 + w, then the maximum
occurs at p = Pmax/+/T when the fields are I and 1(1 + w).
So the distance between the location of the maximum and the
edge itself varies inversely with /7. The same result for the
minimum follows from the same argument.

The main result of this section is that for all IDS models,
the step response always satisfies Weber’s law. The same is
also true of the response to bars and spots with sharp edges,
provided that they are large—meaning large enough that there
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is no interaction between the responses to their two opposite
edges. The next subscction should clanfy this point.

Bar Response

Again, because of Theorem 2, it is sufficient to consider only

vertical bars. Suppose that I{x, y) = I(x) = I {(a positive

constant) for x| > W/2, I(x) = I + D for|x| £ W/2 (so the

input is a bar of width W and intensity D superimposed upon
“a uniform field of intensity 7). Then the output for the

Gaussian model is

O(p) = N[vT X (p — Wi2i] + NI=VT X (p + W/2)]
+ N[U+D)V4x (W/2 - P
~ N{=U + DY X (W/2 + p)]. (6)

The form of the bar response depends on the bar width W and
the background intensity /. Figure 4 illustrates the width
effect: A narrow bar on a fairly intense background produces
a response whose profile is sombrero shaped, uite like the
line-spread function of & linear lateral-inhibitory model based
on a difference of Gaussians or the negative Laplacian of a
Gaussian. A wide bar of the same intensity on the same
background produces Mach bands at buth edges, and inside
the edges the response returns to the baseline response value,
just as would be expected from a linear model whose modu-
lation transfer function (MTF) vanishes at the origin. The
peak and trough amplitudes of the Mach bands in this case

1=100 DELTA |=1000 WIOTH=0.1

}=100 DELTA |=100C WIOTH=1
A r
Nl _/
N\ e

Fig. 4. Bar-response profiles for a narrow bar (top) and a wide bar
(bottom) on a high-intensity background. Background intensity, I
bar intensity, I + AJ. Bar widths are as indicated in the figure. Tick
marks on the abscissa indicate a width of 1.0.
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Fig. 5. Response profiles for the same bars as in Fig. 4 when the
background has low intensity.

depend only on the Weber fraction D// , 80 the detectability
of wide bars should obey Weber's law.

Figure 5 shows output profiles for the same narrow and wide
bars, but now superimposed upon a low-intensity background.
The top panel illustrates how in this case the tnhibitory lobes
of the response to the narrow bar disappear (or, more pre-
cisely, become so broad and attenuated as to be unnoticable),
and only the central excitatory portion of the response is ev-
ident. Thus “lateral inhibition" apparently fails when the
background intensity is low—the receptive fields lose what
appear to be their antagonistic surrounds and seem now to
consist only of positive centers.

_The bottom panel of Fig. 5 shows that the response to a wide
bar also changes dramatically when the background intensity
changes from high to low. Instead of a pair of narrow positive
and negative Mach bands at both edges separated by an in-
ternal region of baseline-level output, the response now ap-
pears to be uniformly high within the bar, and outside each
edge there is a broad negative Mach band. (If this bar were
made much wider, the response inside its edges would even-
tually return to the baseline value, so that each edge would
exhibit both positive and negative Mach bands. In general,
the response profile for any target depends on its size relative
to the background illuminance level.) From the standpoint
of a classical receptive-field analysis it might appear that large
receptive-field units retain their antagonistic surrounds at low
light levels, whereas small units lose them— perhaps because
of insufficient quantum catches in the regions feeding the
smaller units. 1In an IDS svstem all these effects are due to
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intengily-dependent changes in the area of positive spatial
summation,

Sinusoidal Grating Response

Suppose that the input is a sinusoidal grating of the form /(x,
yy=Ix)=L(1+kcos2nfx): L isthe mean intensity level,
k is the grating contrast, and [ is its spatial frequency. Be-
cause our operator is nonlinear we know that it must produce
some harmonic distortion. Figure 6 shows the Gaussian-

. model response to high- (90%) and low- (20%) contrast si-

nusoidal grating inputs. At high contrast levels distortion is
apparent: It takes the form of a spurious second harmonic
that creates noticeable dimples at the peaks of the response,
For low contrast levels, however, the output closely approxi-
mates a pure sine wave. Appendix A shows that for the
Gaussian model the output to a low-contrast sinusoidal
grating of the form /(x) = 1 + k cos 27 fx is approximately

O(p) = 1 + (2x2f2 exp[—27?/?)}k cos 27 /p. (7}

The approximation given by Eq. (7) is obtained by solving Eq.
(4) for I{x) = 1 + k cos 27fx under the assumption that k2 =
0. Consequently it is quite accurate for input contrasts on the
order of 10% or less.

For low-contrast sinusoidal grating inputs, then, the outputs
of the model are effectively sinusoidai, and it makes sense to
speak of its MTF—i.e., the ratio of output contrast to input
contrast as a function of inpuf frequency. Let G(f, L) denote
the MTF for mean input level L. Equation (7) shows that

G(f, 1) = 2x°2 exp(-2%2[2). (8)

To obtain the gencral form of the MTF we use the scaling
theorem:

O[L(1 + k cos 27f2))(p)
= O[1 + k cos 2nfx/\/L)(p\/L)
=1+ [272(f//v/L) exp[-2x2(f//T)?]}k cos 2x/p.

So the MTF is
G({f, L) = 2x*(f//L)? exp|—272(f/\/L)2). 9)

Figure 7 shows this MTF for a range of mean intensity levels,
plotted in the conventional way on log-log coordinates. In
this plot the MTF shifts bodily to the right as L increases: Its
peak (the best frequency) occurs at f = (1/7/2) X vL.and
visual acuity (defined as the highest frequency for which the
MTF exceeds any fixed threshold) increases directly as
VL.

Both the bandpass characteristics of the MTF and its bodily
shift with changes in mean luminance {when the frequency

M 7 contrast

Y cotrast

Fig. 6. Sinusoidal grating response profiles for high-contrast (90%)
and low-contrast (20%) gratings.
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Fig. 7. MTF’s of the Gaussian 1DS model for various input mean
luminance levels.

axis is logarithmic) are general properties of IDS models, in-
dependent of the exact form of the spread function S.
Bandpass properties follow from the fact that very low
frequencies will act like uniform fields and be driven to the
baseline-response level, and very high frequencies will be at-
tenuated by the basic point-spread operation. Bodily shifts
with mean luminance follow from the scaling theorem, as is
shown by the following.

Theorem §

Suppose that for some range of contrast values the output to
a sinusoidal input of the form f(x) = 1 + & cos 2@fx is another
sinusoid of the form O(p) =1 + G(f) k cos 2wfp. Then for
any mean intensity level L the output to the sinuscidal input
L+ k cos2xfx)is 1 + G(f/\/L)k cos 2w/p. |ln other words,
the MTF at mean intensity L is G(//v/L).]

Proof
From Theorem 3

O[L(1 + k cos 2xfx)}(p) = O{1 + k& cos 2xf(x/\/L)](pv/L)
=14+ G{f/\/L)k cos 2a({/VI)pVL)
=1+ G(f/\/L)k cos 2xfp.

Consequently all IDS operators cause the peuk frequency of
the MTF, and also any high-frequency cutoff (visual acuity),
to increase proportionally with the square root of the mean
luminance level. These increases continue up to luminance
levels at which saturation begins to occur, i.e., the point-spread
area shrinks to the size of a single receptor.

Psychophysical evidence indicates that the peak frequency
and the high-frequency cutoff of the human spatial CSF show
siniilar increases with mean retinal illuminance below the
photopic range, though in generul the changes are smaller than
those expected from an IDS model, A plot of log visual acuity
versus log retinal illuminance based on the data of Schlaer?
is quite well fitted by a straight line with slope 3/8 (instead of
1/2) up to about 5 Td, after which acuity levels off rapidly.
The spatial CSF’s of Van Ness and Bouman'® show a peak
frequency that increases by 0.8 log unit (instead of 1) as mean
illuminance increases from 0.09 to 9 Td. Raising mean illu-
minance beyond this point produces smaller changes in the
CSF peak, and above 90 Td it appears that the entire CSF
becomes independent of the mean luminance level.

Another difference between the behavior of 1 DS models and
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psychophysical data is that human CSF’s generally show a
decrease in sensitivity at the peak frequency zs mean luini-
nance decreuses, !0 whereas the IDS model MTF maintains
a constant gain at its peak frequency.

Discrepancies between 1DS-model predictions and psy-
chophysical data vbtained at photopic fuminance levels are
to'be expected in view of the model’s automatic saturation
property. It is interesting to note that the signal-detectability
argument given in Section 1 implies that reliable detection of
contrasts of the order of 0.1-1% covering an area the size ofa
single photoreceptor requires a quantum catch of the order
of 108-10" times ubsolute threshold, or approximately 10-1000
Td. Over the range 10-1000 'I'd, then, the visual system loses
its need for spatial summation, and so the disappearance of
an IDS mechanism through saturation would not be disad-
vantageous. In this connection it is worth recalling that rod
saturation occurs in the same range.?

Discrepancies below the photopic range call for a different
sort of reconciliation. One approach is to weaken the IDS
model’s assumption that the point-spread area varies inversely
with quantum catch. In Section 5 we develop a generalized
IDS model in which that area varies as a power function of the
input intensity. This allows the model to predict visual acuity
and peak-frequency changes with mean luminance more in
line with empirical results. A second approach is 1o take into
account the time required for a point-spread effect to disperse
across the retina. When plausible assumptions about this are
combined with the actual temporal conditions prevailing
during CSF measuiements, preliminary unalysis indicates that
the IDS model yields a rise in peak-frequency sensitivity with
increasing mean luminance comparable with that exhibited
by human CSFs.

The exact shape of the MTF of an IDS model depends on
the form of its point-spread function, and o it is an interesting
coincidence that for the Gaussian cuse the M'TF [Eq. (9)] turns
out o be the same one produced by Marr and Hildreth’s linear
DEL%-G model of early visual processing.® In that model the
image is convolved with the Laplacian of the Gaussian func-
tion —(1/0%2m)exp[—(1/2)(x2 + y%}/0?], i.e., with the som-
brero-shaped point-spread function

(l/v’;)z(l/aﬁ)'-’[l = (x2+ y2)/20%exp[—(1/2)(x2 + ¥2)/e3).
The Fourier transform of that point-spread function is
4y +‘l:r.'-')c:xp[—27r30'-'(u‘2 + 3],
and so its MTF for one-dimensional sinusoidal gratings is
47Ef2 exp(—2n2a?f?).

It follows that the Gaussian 1DS model cannot be distin-
guished from a single channel DEL2-G model by experiments
that simply determine the shape of the CSF at any fixed mean
luminance level. [Such experiments generally involve small
contrast values, in the range 10% or less, so that the approxi-
mation in Eq. (9) is valid. For high contrast values the non-
linearity of the IDS model would become an important factor
and could allow an experimental discrimination between the
models.] Marr and Hildreth® show that a DEL?-G filter is
essentially indistinguishable from a difference-of-Gaussians
filter of the sort used by Wilson and Bergen,' and so the same
is true of single-channel linear models based on that filter.
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4. RESPONSES TO TWO-DIMENSIONAL
PATTERNS

Ricco's Law and Weber's Law

Ricco's law states that the detectability of a spot of light de-
pends only on the product of it area and intensity. Experi-
mentally, in human vision, this holds for spots up to a certain
critical size—a size that decreases as the background intensity
increases.>? We show here that the IDS model implies that
Ricco's law holds for spots of all sizes on & background field
of zero intensity—in the sense that the peak value of the
output to such an input is the same for all apots of the same
shape that have the same product of area times intensity. On
nonzero hackgrounds it causes Ricco'’s law to hold (in the same
rense) for spots up to n critical aren that decreares as the
backpround intensity increnses.  (The experimental fact that

el LN
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Fig. 8. Response profiles for square spots on a derk background.
Spot area (A) times intensity (/) was held constant at 10. Curve 1,
I=1,A=10curve2, ]I =10,A =1;curve 3,1 = 100, A = 0.1; curve
4,1 = 1000, A = 0.01.
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Ricco's law holds for only a limited range of areas even on a
nominally dark background does not necessarily contradict
the model, since the activily in real visual systerns does not
fall to zero in datrkness.) The INS model also predicts the
tvpes of configurational effect reported by Sakitt,’ who found
that two separated spots lying within Ricco's area do not vield
perfect summation but instead require more total quanta for
detection than a single spot. in the same area.

Figure 8 shows the profiles of the Gaussian IDS-model re-
spanse Lo square spots of various sizes on a zero background.
The input image here was [{x, v) = I for|s] < W/2,|s < W/2,
I(x,y) = 0 elsewhere (80 the spot area was W?). The output
equation in this case is

O(p, @) = IN[(W/2 = p\WT] — N[-(W/[2 + p)T})
X!N[(W/Z—q)\/j]—N[—(‘V/2+q)\/7]|. (10)

In this figure all spote have a (ares X intensity) value of 10.
The response profiles shown here run along the horizontal axis
through the center of the squares. It can be seen that the peak
output velue is the same for all inputs. This is a general
property of IDS models.

Theorem 6

The peak value of the output {o uniform patches of light on
a zero-intensity background is the same for all patches of the
same shape that have the same product (area X intensity).

Proof
For convenience we prove the theorem for square spots, but
the form of the proof applies to any shape. Suppose that I'(x,

1=0.01 I=0.1
/’ ., \\ \ 1
1 2 34 . \ -
_/ ») —
carve A= 10
2A= 1
A= 0.1
A= 0.01
" I -
l=1 1=10
A
TN N
:- . .‘l \ . '; R ‘;-
12/ 3 P

Fig. 9. Response profiles for square spots on nonzero hackgreunds of various intensities. The input images were squares of iptensity ] + D
surrounded by backgrounds of intensity /. The spot area (A) times ils incremental intensity (D) was held constant (D X 4 = 10), and responses
were computed for A = 0.01,0.1, 1, and 10. Upper left, background intensity I = 0.01; upper right, I = 0.1; lower left, ] = 1; Jower right, [ =
10.
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Fig. 10. Increment threshold as a function of test spot area for
background fields of various intensities. The input images were
square spots of area A and intensity J + D surrounded by uniform
background fields of intensity /. Each curve shows, in log-log coor-
dinates, the value of D required to produce a peak response of 1.15
as A increases over eight log units. Background intensities range from
1 = 1000 (top curve) to I = 0.001 (bottom curve). The diagonal
straight line represents Ricco's law; each curve follows this line up to
some area value and then departs from it as shown.

¥) is a square spot of width W and intensity / on a dark
background, i.e., I’(x, y) =/ for|x| £ W/2,|¥| < W/2; and I'(x,
¥) = O elsewhere. And suppose that I(x, y) is another square
with intensity ¢/ and width W/\/¢, so that (area X intensity)
is I X W2 for both. Then I(x, ¥) = ¢/’(xA/%, y\/¢), and so0
from Theorem 3

O[I(X,}‘)](P, g)= O(cl’(x\/;, _}'\Q)](P, q)
= Ol (x, y)(pv/e, g\ /7).

Consequently, if the peak output to / “(x, y) oceurs at (p’, ¢’),
the peak output to I(x, y) occurs at (p’/A/c, ¢’A/Z) and has the
same value as the peak output to I (x, y).

For nonzero backgrounds, the IDS model implies that
Ricco's law holds as an approximation for small spots: Upto
a certain spot size the peak output value remains constant out

" to several decimal places (e.g., 3) for all spots (of the same
shape) that have the same value of (area X intensity). The
higher the background intensity, the smaller the critical area
beyond which Ricco’s law begins to fail.

Figure 9 shows the profiles of the Gaussian-model responses
to square spots of various sizes on various backgrounds. Spot
(area X intensity) was held constant at 10. On the lowest-
intensity background (0.01) the peak-response value remains
constant for areas ranging from 0.01 to 10. When the back-
ground intensity is increased to 0.1 the peak-response value
is still constant for areas up to 1.0 but drops below the constant
value for the largest spot (area = 10). Fora background in-
tensity of 1, only the two smallest spots preserve a constant
peak output, and, finally, at the highest background intensity
(10) Ricco’s law fails for all but the smallest spot. (At this
background intensity, Ricco’s law would hold only for spots
with areas <0.01.)

The equation for the Gaussian-model response to square
spots of intensity I + D on backgrounds of intensity / is
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Op.g) =1+ (IN[AW/2 = p)] = N[-A(W/2 + p));
X {NJA(W/2 - g) - N[-AW/2 + qlh
= (INIB(W/2 = p)] = N[-B{W/2 + p)}i
X INIB(W/2—Q)]—N[—B(W/2+q)]f). (11)
where A = (I + D)2, B = /7, and W is the spot width.
Figure 10 summarizes the Ricco law behavior of the model.
It shows, for a range of background intensities, the spot in-

A, -
tensity needed Lo produce a constant peak response as a

function of spot area. (The spots here were squares, and the
peak-response value at threshold was taken to be 1.15. That
value was chosen for convenience: It is the peak response to
a square of unit areawhen D = 1and / = 0.1. The choice of
threshold value is irrelevant here; other values yield curve
families that look like those in Fig. 10.) For all background
levels the constant-response curve runs for some distance
along a line of slope —1, indicating obedience to Ricco’s law,
and then departs from this line when the spot area reaches a
critical value. After a brief further decline with further in-
creases in area (Piper’s law), the curves increase a bit and then
level out to constant values. For spot areas in that final range
the peak response occurs as a Mach band at their edges and
is governed by Weber’s law.

Increment-Threshold versus Background-Intensity Curves
The last point is made more explicit by Figs. 11 and 12.
Figure 11 replots three of the curves from Fig. 10 in the form
of standard increment-threshold versus background-intensity
(TVI) curves. 1t can be seen that these TVI curves evolve
through three stages. When background intensity is low the
curve is flat, as though threshold were limited by dark light
(though here there is none). Next there is a transitional stage
in which the TVI curve increases with a slope that is first
somewhat less than one and then somewhat greater. Finally,
when background intensity is sufficiently high, the TVI curve

o
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Fig. 11. TVI curves for test spots of different areas. These are
replots of data from Fig. 10. Each curve shows the incremental in-
tensity D required to produce a fired peak-response value when the
input is a square spot of area 4 and intensity / +D, surrounded by
a background of intensity /. The three curves shown are for A = 0.01,
A=1and A = 100. As background intensity increases, all curves
eventually terminate in a diagonal straight line corresponding to
Weber's law.
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Fig. 12. Response profiles at threshold for a spot of fixed area on
backgrounds of various intensities. Each curve shows the profile of
the response to a square test spot of area A = 1 and intensity / + D
surrounded by a uniform background of intensity . The increment
value D in each case is that required to produce a peak output value
of 1.15. Top profile, background intensity I = 0.01; middle, ] = 10;
bottom, I = 1000,

attains a slope of one (Weber's law) and retains it for all higher
hackgrounds. The background-intensity values corre-
sponding to these three ranges depend on the size of the test
spot: The larger the spot, the sooner its TVI] curve begins to
follow Weber's law,

These TVI curves are in good qualitative agreement with
standard psychophysical results,’ except that in the Weber's
law region our curves all run together, whereas in practice one
expects to find a slightly smaller threshold value of the Weber
fraction for larger test spots.’® This can be understood in
terms of the fact that larger spots have longer perimeters,
which should increase their relative detectability once the edge
response becomes the dominant factor. We have not sought
to model such an effect, since 10 do so realistically would in-
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troduce issues of noise and probability summation beyond the
scope of this paper.

Figure 12 shows how the shape of the threshold-value re-
sponse profile changes as background intensity increases.
These profiles are for a test spot of area 1.0. On low-intensity
backgrounds (in the zero-slope portion of the TVI curve) the
response is simply a broad shallow bump, peaking in the
center of the test spot. Here threshold is determined by the
increment intensity required to make this central peak exceed
the threshold criterion. In the next background-intensity
range (corresponding to the transitional-slope portion of the
TVI curve) the respense profile at threshold has a sombrero
shape, with apparent inhibitory regions surrounding a céntral
positive bump. Here threshold is still determined by the
response value at the center of the spot. Finally, on a high-
intensity background, the response profile congists entirely
of Mach bands at the edges of the test spot, and threshold is
determined by their peak values. Those peaks follow Weber's
law, as was shown earlier in Section 3, and this is the Weber
region of the TVI curve.

Shape of the Impulse Response

Figure 13 illustrates, for small spots, a point made earlier for
thin bars: At moderate to high background intensities, the
IDS model preduces a sombrero-sheped impulse response
(center-surround antagonism), hut when the same spot lies
on a low-intensity background, the depression of surrounding
activity becomes negligible, and the response appears to be

1=100 81000 WRITH=0.1

1=0.1 8= 1000 WIDTH~0.}

| S— - 4 {

Fig. 13. Response profiles for a small rquare spot of fixed incre-
mental intensity (D = 1000) superimposed upon a'high-intensity (top
curve, / = 100) or & low-intensity (bottom curve,/ = 0.1) background.
Spot width, 0.1,
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‘purely positive—as though lateral inhibition had failed at low
light levels. Mammalian retinal ganglion cells have been re-
ported to behave in this fashion.®¥ That fact has generally
been interpreted in terms of a loss of the mhibitory contri-
bution from the antagonistic-surround portion of the cell's
receptive field. We see here that the sanie effect also oceurs
naturally in a system involving no inhibition.

The cause of this apparent loss of lateral inhibition on
low-intensity backgrounds is that when the background level
is low, the width of the point-spread function in the back-
ground region is large, and consequently the value of the re-
sponse at points near the test spot is the sum of many small
contributions coming from a large portion of the field. The
high-intensity test spot reduces the amount of spread coming

from receptors directly beneath it, but these are relatively few

in number, and consequently their overall point-spread con-
tribution to the response at nearby points is negligible to begin
with. Thus, when it is removed, there is only a negligible re-
duction in the response level. When the background intensity
is high, however, the point-spread function is narrow, and the
response level at points near the test spot is the sum of spread
values contributed by a relatively small number of closely
neighboring points. In this case the loss of the spread values
formerly contributed by points beneaih the test spot causes
a substantial reduction in the response level at points adjacent
Lo that spot. Thus the same test spot creates appreciable
“lateral inhibition” at nearby buints when it is superimposed
upon a high-intensity background and no apparent inhibition
when the background is low.

Configurational Effects

At any given background intensity, Ricco’s area can be defined
as the area of the largest spot for which Ricco’s law holds. If
Ricco’s law were the result of summation within the central
region of a classical receptive field, one might expect all targers
smaller than Ricco’s area to be equally detectable if they have
the same value of the product (area X intensity). Sakitt
found, however, that Ricco’s law is violated within Ricco’s area
when the target is a pair of spatially separated spots rather
than a single continuous one.!> Her experiment showed that
two spots that deliver a fixed total number of quanta within
Ricco’s area may be undetectable even though the same
number of quanta are detectable when imaged in the form of
asingle spot. Moreover, she showed that her results could not
be reconciled with the idea of spatisl summation over a
fixed-size receptive field even if one allows for the possibility
that receptors have different weights depending on their po-
sitions within the field.

For the IDS model these configurational effects pose no
difficulty. It predicts what Sakitt found: The peak response
to two spatially separated sputs, each of area A and inten-
sity/unit area D, is less than the peak response to one spot. of
area A and intensity 2D, even though they lie entirely inside
an area that would yield apparently perfect spatial sutnmation
when tested with larger continuous spots. Figure 14 illus-
trates this effect.

The top panel shows the response profile for a single square
spot of intensity I + D surrounded by a background of in-
tensity 1. { here is 0.1, and Fig. 9 shows that at this back-
ground intensity the width of Ricco’s area is 1.0. The spot
whose response profile is shown here has a width of 0.1, and
its (area X intensity) value is 10. (That is, D is 1000.) The
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peak-response value for this spot is 1.78. The bottom pane]
shows the respanse profile for a pair of square spots, each of
width 0.1, whose edges are separated by a gap of 0.05. The
background intensity is again / = 0.1, and each spot has an
intensity 1D = 500, so the comnbined (area X intensity) value
for the two spots is 10. Thus this pair of spots falls well within
the-area of perfect spatial summation for this background
intensity and have the same total (area X intensity) value as

«the single spot. However, the peak-response vatue for the pair

is only 1.55.

This behavior can be understood qualitatively in the same
way as the 1DS model’s creation of Mach bands at edges.
Here the single spot’s response contains a substantial con-
tribution coming from receptors lying under the background
portion of the input image. The responses to the separated
squares gain a smaller contribution from spreading, because
each square has a high intensity and consequently creates a
narrower spread function in the receptors beneath it than they
would produce if the low-intensity background were present.
Thus each square reduces the point spread that its receptors
would have contributed to the output of its neighbor.

The fullowing expression is the outpul image equation for
the Gaussian case of the IDS model when the input image is

1=0.1 D= 1000 WIBTH=<0.1

mXinam repesss~ .78
o x=0

fosponte e & singls squary
with AxB =10

1=0.1 §=500 WTH~0.1

C—C saparation=0.15

sauass respease= | 856

o i=-0073 -

FeEpenes B o pak of squarss
wilk combinnd AxD~ 18

Fig. 14, Configurational effects within Ricco’s area. The wp curve
is the response profile fur g single square spot with (ares X intensity)
=10. The bottoin curve is the response profile for a pair of square
spots whose combined (area X intensity) value was also 10,
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A pair of squares of intensity J + 1), width W, and center-
- center separation S, surrounded by a uniform background of
intensity /. 1t assumes that the squares are both centered on
the x axis. The curve in the hottom panel of Fig. 14 is a plat
of the profile of this output function along the p axis (i.e., the
horizontal axis of the output image).

Olp.q] =1+ (N[AW/2 - @)] - N[A(-W/2 - ¢)}}
XIN[A(S/2+ W/2 = p)] - N[A(S/2 - W/2 - p))})
+ (IN[AW/2 - q)f = N[A(=W/2 = )]}
XAN[A(=8/2+ W/2 = p)] = N[A(=5/2 = W/2 - p)]])
— (NIB(W/2 = g)] = N[B(-W/2 - ¢)]]
X IN[B(S/2+ W/2 - p)| - N|B(S/2 -~ W/2 = p)]})
— (IN|B(W/2 = g)] = NIB(=W/2 - g)]|
XINIB(=§/2+ W/2 - p)] = N{B(=§/2 — W/2 = p)I}),
(12)
where A = (I + D)"2and B = 1/T.

5. DISCUSSION

Intensity-Dependent Spatial Summation as a
Psychophysical Model

For a model based on a single assumption, the IDS model gives
a surprisingly complete first-approximation description of
human spatial vision for retinsl i}luminances ranging from
ahsolute threshold up to around 10 Td. It predicts the {wo
major effects usually associated with spatial summation: the
dependence of Ricco's area on background luminance and the
fact that visual acuity increases approximately as the square
root of mean luminance. And, unexpected)y. if. also predicts
two major effects that are not usually thought of as related to
spatial summation—or, indeed, to each other: Mach bands
and Weber's law. Those two effects are typically explained
in terms of mechanisms quite different from the one embodied
in the IDS model: lateral inhihition for Mach bands and
nonlinear transduction for Weber's law. Here we examine
the relationship hetween those familiar concepts and the IDS
mechanism. We also describe a way in which the 1DS model
can be modified to produce a closer fit to psychophysical data
and point out a connection between IDS processing and
hrightness constancy.

Mach Bands and Constant-Volume Models

Mach bands are generally attributed Lo a neural process of
lateral inhibition that. can he modeled by convolving the ret-
inal image with a sombrero-shaped point-spread function
whose negative brim represents the inhibition.'”? We will refer
to this as the standard linear lateral inhibitory (L1.I) model.
Within the framewark of linear systems theory, lateral inhi-
bition is the only passible explanation of Mach hands, since
Mach bands correspond (o a bigh-pass filter effect and in a
shift-invariant linear model such an effect can be produced
only by a point-spread function containing negative lobes.
However, we have seen that the IDS madel, which is nonlinear,
creates Mach bands with a purely positive point-spread
function.

Thus the IDS model represents a new principle for gener-
ating edge enhancement. namely, edge enhancement will he
produced by any model in which each photoreceptor creates
a point-spread function whose volume is the same for all input
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intensities. Recall that the fundamental assumption of the
IDS model is that the height of the receptor output function
varies directly with input intensity but its volume remains
constant. As a consequence, the effect of an image on the
system is not Lo change its total output but rather to redis-
tribute that output in space. It follows that, when the input
is a uniform field, the output must also be unifarm and that.
output level will be the same regardless of the input level —this
is the intuitive proof that was given for Theorem 1 in Section
2. Inother words, the sensitivity of the IDS model to uniform
fields is zero.

Put another way, the IDS maodel has zero sensitivity at
spatial frequency zero. And by extension it.is clear that the
same i true of any model in which the volume under the re-
ceptlor oulput function remains constant across all input in-
tensities. Furthermore, if the model responds at all, its sen-
sitivity will rise from zero as frequency increases, so that it will
act like a high-pass filler. And that. in turn. is what is gen-
erally meant by edge enhancement: Low frequencies are
attenvated more than high frequencies, so that in the image
itself large uniform areas are attentuated more than edges. It
follows that all constant-volume models will produce edge
enhancement.

An example of a constant-volume model different from the
IDS model is illustrated in Fig. 15. Here the receptor point-
spread function is the sum of two functions: a Gaussian
whose variance remains constant and whose height is directly
propertional to the input intensity I. added to another
Gaussian whose variance also remains constant but whose
height varies as {c — I), so that the total volume under the
spread function (i.e., the volume under the sum of the two
Gaussians) is always equal to ¢ regardless of the input inten-
sity /. Because the volume is constant, this model will at-
tenuate low frequencies and produce Mach hands. |Note that
if ¢ is positive the composite spread function will be entirely
positive when the input level I is low and then will assume a
sombrero shape at higher input levels, when (¢ = 1) becomes
negative.]

SUM 4

=13 SUM -+

Fig. 15.  Companent curves for the paint-spread function of 8 con-
stant-volume model that. differs from hoth the INDS mode] and the LLI
model. Here the point spread is the sum of two functions, one whose
height increases proportionally with the input intensity / [here, a
Gaussian of the form 7 X G (x, v), where Gy has a fixed standard de-
viation g,] and another whose height varics as ¢ — I, where ¢ is a
positive constant {here, (c ~ [) X Gax, v), where G has fixed stan-
dard deviation 05 and a5 > a;]. Component curves for two values of
I are shown on the left, and the corresponding composite point-spread
functions are shown on the right.
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is canstant-volume model is nonlinear since
Sup[:rf)i:f(r:)‘n lf‘;‘ﬁ;u?]s‘ltxe vutpul to 4 uniform f':ield w.nh m
lensity 2/ (i.e., ¢) is not twice the output to g fielg with in-
tensity / (also ¢). However, when ¢ equals zero the model js
linear—in fact, it is the standard LLI model. Thys that model
falls in the intersection between two distinct classes of mode|
for edge enhancement: [t is simultaneously a constant-vo)-
ume mode! and a linear model with negative lobes in its im-
pulse response. Since no linear mode] can be g constant-..,
volume model unlegs the volume under its impulge response
is zero (and consequently the value of jtg MTF is zero at the
origin), it follows that the only linear models that can produce
edge enhancement with complete de suppression are also
constant-volume models,

We see then that the edge-enhancement Properties of the
standard LLI model need not hecessarily be attributed to
inhibition per se. Instead, they could equally well be said to
follow from the fact that it, like the IDS model, is a con-
stant-volume model.

Weber’s Law and a Generalized Intensity-Dependent
Spatial-Summation Model

Weber’s law is often attributed to an early nonlinear trang.
formation in the visual system that causes the neurgl response
to an input of intensity / to be approximately proportional to
log f. This very old idea is not really satisfactory because jt
does not. explain why Weber’s law fails at Jow luminances, and,
more critically, even when buttressed with the concept of dark
light, it still cannot explain why the range of background lg-
minances for which Weber’s law holds exactly should depend
on the size of the test spot. The IDS mode] accounts for
Weber’s law and its failures on a totally ditferent principle.
Here the height of the receptor response varicsg linearly with
the input intensity, and Weber's law arises as an edge effect
that is due to spatial summation—an effect that begins to
become significant only at a critical level of background lu-

A natural question here is: What specific feature of the IDS
model causes Weber’s law to occur at a}l?

The answer cannot be the constant-volume assumption per
se, since that assum ption is shared by the standard LI model,
which does not imply Weber’s law. And for the same reason,
it cannot be the assumption that the height of the receptor
spread function is directly proportional to the input intensity.
In fact, the key to the model’'s Weber-law behavior is the

of the spread function when the input intensity is J is / x
SUr?), where r ig distance (rom the receptor. This ussump-
tion keeps the volume under the spread function constant by
causing the equivalent area (volume/center height) 1o vary
inversely with /. But closer analysis shows that this specific
area-intensity relationship is not necessary for Weber’s law,
In fact, if the spread function takes the form 1" X S(1nr2),
where n is any nonzero exponent, and all the other assump-
tions of the IDS mode] remain the same, the resulting model
still implies Weber’s law, though now the area under the
spread function varjes inversely with Jn instead of simply [,
Thus the critical feature is really the fact that the model causes
the spread function to change with Intensity by rescaling the
x and y coordinates of the reting} plane by factors that exactly
undo the change in jtg height, thereby leaving its volume
constant,
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To prove that the generalized 1IDS model mentioned iy 1he
last paragraph implies Weber's Jaw, recall that the key to our
proof that all IDS models imply Weber's law, regardless of the
form of the basic spread function (Theorem 41in Section 3) was
the scaling theorem (Theorem 3). Suppose now that we alier
assumption (3) of Section © g, that the spread 14 output point

“(p, q) from input point (x, ) with input intensity I(x,yv)is

(3A) II(X.J')I”SHI(A‘..\'U"[(I —Pi+ (y—q),

where S js any spread function satisfying assumptions (1)-(4)
of Section 2. And $uppose that the output image is stiil the
sum of the spread functiong, Le., assumption (5) now be.
comes

(54)  Ol/x, »)](p, q) = ff [z, y))n
XS, ) [(x - p)2 + ' = @)?ydy dx.

Then Theorem 3 can be generalized as shown below.

Theorem 34 ( Generalized Scaling Theorem)
For every positive constant ¢ and every input Image /(x, ¥y)

Olel(x, y)j(p, ¢) = Ol G/ e, yinvem))
(p\/;",Q\‘/z"}. (13)

Proof

As in the proof of Theorem 2, we express the right-hand side
of Eq. (13) in terms of the integral in assumption (5A) and
make the change of variable u = ¢ /(,/7n LW =y/(\C"). The
result is the lefi-hand side of Eq. (13) expressed in integral
form.

input intensities on the two sides. In other words, the gen-
eralized IDS mode] in which the point-spread areg varies in-
versely with 77 stij] implies Weber’s law in the same way as
the original model,

In fact all the theorems proved for the original mode] still
hold for this generalization, since their proofs in every case
depended only on the scalj ng theorem. The only difference
is that, wherever the original theorems and proofs mention
the mean luminance level L, one needs to substitute L7 in the
general case. ‘I'hug Fheorem 5, which showed thas visual
acuity increases ug \/T, can be immediately generalized 1o
show thyt acuity in this mode) increases as VIE As noted
in Section 3, » values less than 1.0 are more in line with psy-
chophysical HCUity measurements leg, n =0.75 for the data
of Schlaer?). Thisis also true of Mmeasurements of the size of
Ricco's area as g function of background luminance: Bay.
low's? resuls obtained at 6.5-deg eccentricity require a n of
the order of 0.2, and the foveal data of Glezer? gre fitted by n
= (0.5.

Discounting the Hluminant: Weber's Law and Brightness
Constancy

Most objects in natural scenes emit no light of their own but
simply reflect light from the sun or some artificial source.
Normally the reflectances of objects remain constant over
time, but their illumination may vary by factors ag large as
1079 g0 the irradiance of their optical images can vary by the
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same factor. After IDS processing the peak and trough am-
plitudes of the Mach bands at edges depend only on the ratio
between the input image intensities on the two sides (Fig. 3.
This ratio depends only on the reflectances of an object and
its background and is independent of scene illumination. The
shapes and the positions of these peaks and troughs, however,
depend on the absolute input intensities and thus on illumi-
nation: Both become narrower and move closer to the edge
itself as iluminatijon increases. For any object-background
combination, then, there is some illumination level beyond
which the Mach bands generated on opposite sides of the
object no longer overlap one another. At this level and alj

depend on the reflectance ratio across its edges and whase
interior has the baseline output value (1.0 for the IDS opera-
tors defined in Section 2). Of course this critical illumination

amount. it {ollows that in an IDS system the detectability of
any object will follow Weber’s law once the illumination level
gets high enough. .

If the apparent brightness of an object is unaffected by its
illumination and depends only on its reflectance and that of
its background, as is roughly true in human vision, one speaks
of brightness constancy. In the human visual system, the
apparent brightness of the interiors of large objects of uniform
luminance must be based on an extrapolation from their
edges, since the retinal images of the interiors are effectively
stabilized images and consequently cannot contribute to their
visibility.1® If ap extrapolation mechanism based ita as-
signment of interior hrightnesses on the peak and trough
values of the Mach hands at the edges of objects and received
its input from an IDS operator. H oo would exhibit brightness
constancy for all objects beyond a certain size.

Intensity-Dependent Spatial Summation as an
Image-Processing Algorithm

Intensity-dependent spatial summation seems potentially
useful as a first-stage image~prucessing operation for appli-
cations involving the same Lype of boundary conditions faced
bv the retina—applications in which the inputs are Poisson
noisy images whose mean intensity levels [(quanta/pixel)/
frame] can vary suhstantially from scene Lo scene (e.g., because
of changes in illumination) and also within a single image (e g.,
because of shadows). These conditions occur naturally for
television pictures of real scenes illuminated by the sun,

Automatic Gain Contro] . .

The illumination falling upon natural scenes can vary over the
course of a day by as much ag 1010, Ngo recording medium can
readily accommodate such an enormous dynamic range.
There are two fundamenta) objections to the usual solutions
to this problem, such as the use of filters or amplifier gain
changes. First, they are insensitive to local variations in scene
illumination, e.g., owing Lo shadows: The elfective luminance
of the entire scene is reduced by a common factor, which can
reduce the signal leve] in shadowed areas down into the range
of the system noise. This is Symptomatic of the second
objection, which i« more general. Spatial contrast. detection
is in principle lhnited by photan noise at gll Hlumination
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levels; contrast sensitivity can alwayve he irﬁproved by in-
creasing the quantum catch, Thus any gain-control mecha-
nismn that simply enforces g fixed quantum catch, as the use
of an irig or a filter does, is bound 1o become increasingly in-
efficient as the illumination level rises.

The IDS mechanizm automatically compresses all input
intensities into a output range extending from zero up to
around twice the value of the constant point-spread volume
(i.e., 0-2 when that volume is taken 1o be 1.0, as it was arbi-
trarily in the IDS model of Section 2.) Indoing this it makes
efficient use of every photon: Asthe image plane illuminance
increases, the extra photons serve 1o decreage the size of the
spatial-summation area, improving spatial resolution while
maintaining a fixed reliability of contrast detection. And this ‘
effect occurs locally within a single imnge, 8o that in every
region the size of the summation area ir matched to the illy-
mination falling upon objects in that portion of the scene.

Noise Smoothing and High-Frequency Attenuation

In noise smoothing by local averaging, the size of the sum-
mation area is usually held constant throughout anv single
image. The effect is simply low-pass linear filtering. This
is & sensible way of suppressing photon noise, provided that
the mean intensity level is known in advance (so that the
summation area can be set inversely preportional to it) and
that there is not much variation around the mean level within
any single image. If the last condition cannot be guaranteed,
either summation over g fixed area loses potentially rerolvable
high frequencies in the high-intensity regions of the image
{hecause the summation area is 100 large for the mean lumi-
nance level in those regions), ar else the low-intensity parts
of the image become needlessly noisy (because the summation
area is toc small for the mean luminance level there), or both
effects occur at once in different parts of the image.

The IDS operation, on the other hand, acts like a spatial
filter whose high-frequency cutoff is always adjusted to match
the prevailing light level (Fig. 7). In effect, it selects for at-
tenuation the spatial frequencies that are so high. relative 1o
the mean quanium catch/pixel, that they could not be reliably
discriminated from photon noise. Thus the mean luminance
level does not have to he known in advance, because the IDS
mechanism adjusts to it automatically. And since this process
occurs locally, different parts of the same image can have
different mean intensity levels without requiring the mech-
anism to compromise on a single high-frequency cutoff. In-
stead, each region's cutoff frequency is automatically matched
to its local mean intensity level. Thus. if the input is an image
of a natural scene illuminated by the sun and some parts of
the scene are in shadow, all paris of the output image will sj-
multaneously tend (o contain the maximum amount of
high-frequency information Justified by their local mean lu-
minance levels.

Edge Enhancement

Edge enhancement is usually accomplished by convalving the
input image with a more or less sombrero-shaped point-spread
function consisting of a positive central region and a negative
surround. For Poisson noisy optical images, this bandpass-
filtering operation has no effect on the signal-to-noise ratio:
If the input image takes the form J x r(x,v), where / is scene
illumination and r(x, ¥} is the reflectance distribution over
ascene, after convolution the mean Lo standard deviation ratio
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at each point js stjl] proportional to v/7. 1If the volume of the
point-spread function is 2zero, as it usually is, uniform regions
in the input Image at any intensity [ are converted into
bandpass-filtered Gaussian noise with mean zero and variance
I at every point. This noise is the background against which
objects must be detected. For any value of /, the size of the
sombrero must be adjusted to ensure an adequate signul-
Lto-noise ratio at the Mach bands produced at edges, since
those are the only places where most objects will be visible.
In general, the critical size varies inversely with 1, and, if the

formation (when the sombrero is wider than necessary) or
edges that cannot be discriminated from noise (when the
sumbrero is too small). If / varies greatly within a scene, the
filter cannot be appropriate for all regions simultaneously, and
one defect or the other is inevitable, just as with linear noise-
smoothing filters.

An IDS operator acts like a bandpass filter whose frequency
range automatically changes to match the prevailing mean-
luminance level, both from scene to scene and also locally
within scenes. Consequently, the parameter of an IDS filter
(i.e., the width of jts point-spread function) needs to be ad-
Justed only for a single Juminance level, and the filter will then
adapt to all other levels {up t its saturation point), main-
laining essentially the same size edge response at all levels for
constant-contrast edges (because of the Weber-law property
discussed above) and increasing spatial resolution as scene
illumination increases. It can be shown that, for the Gaussian
case, the IDS responsge (o Poisson noisy uniform fields has a
constant mean and variance for al| values of ] > 0.01. Con-
sequently, the background noise against which objects are
detected does not increase with scene Hlumination, and the
detectability of edges (and thus of large targets) should remain
- constant as illumination increases, while resolution im-
proves.

6. SUMMARY

We have analyzed a nonlinear model of retinal image pro-
cessing, the IDS model, based on a single assumption: The
height of the point-spread function varies directly with iflu-
minance, whereas its volume remaing constant, so that the
area under the spread function around each photoreceptor is
inversely proportional 1o the illuminance at that receplor.
This assumption allows reliable spatial contrast discrimina-
tion in the face of photon noise while simultaneously maxi-
mizing spatial resolution. 1t proves to have the following
consequences:

(1) Bandpass Filtering. The input image is effectively
bandpass filtered, producing Mach bands at edges and an
apparent center-surround antagonism in the response to small
spots. 1n genera), the model mimics effects normally attrib-
uted to lateral inhibition. This mimicry includes the fact that
the appearance of lateral-inhibilory effects depends on illy-
minatlion: At low background intensity levels, responses to
small test spots exhibit no noticeable surround antagonism,

(2)  Ricco’s Law. For spatially continuous targets smaller
than a critical size, the peak response value depends only on
the product of larget area times intensity, Thus detection
of such targets should obey Ricco's law. The size of the crit-
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ical area (that is, the size of Ricco's area) varies inversely with
the background illuminance.

(3} Configurativnal Vislations of Ricco’s Lau, Within
Ricco’s area (1hat is, the area of appareut perfect spatia)
summation as determined with spatially continuous targets),
Riceo’s law fails for noncontinuous largets: A single spot
produces a larger peak response than two separated spots that
have the same combined area x intensity product.

(4) Del®G MTF. The response to low-contrast sinys.-
oidal gratings closely approximates a sinusoid, allowing one
todefine a MTF. For the Gaussian case of the IDS model, the
MTF at any fixed mean luminance level has the same form
implied by a LLI model based on the negative Laplacian of
a Gaussian,

(5)  Visual Acuity Improves with lllumination. The
MTF varies with illuminance in such g way that any high-
frequency cutoff increases as the square root of the mean ly-
minance level (for the simplest version of the model). This
implies that visual acuity should vary in the same way.

(6) Weber's Law Succeeds or Fails Depending on Target
Size and Background Intensity. The response to edges
separating large uniform fields obeys Weber's law: The peak
and trough values of the Mach bands at edges depend only on
the ratio between the input image intensities on the two sides
of the edge. Whena target of fixed size is superimposed upon
background fields of increasing intensity, its response profile
evolves through three stages: first a simple bump, then a
sombrero, and, finally, a pair of Mach bands at both edges with
a baseline-response level between. The smaller the target is,
the higher is the background level required to reach this final
stage. Once it is reached, the detectability of the target
satisfies Weber’s law for all bhigher background luminance
levels. In general, the mode] implies threshold versus back-
ground intensity curves whose shapes closely resemble those
found in psychophysical experiments.

(7)  Brightness Constaricy. Assuming that the brightness
of a target depends on the size of its edge response, the Weber
property implies that sufficiently larpe targets will exhibit
brightness constancy; i.e., their brightnesses will be inde-
pendent of the scene llumination and depend instead only
on their reflectances relative to that of the background.

APPENDIX A: DERIVATION OF THE
RESPONSE TO LOW—CONTRAST_ SINUSOIDAL
GRATINGS

We derive here the approximation given in Eq. (7). Suppose
that the input is a vertica) sinusoidal grating of the form I(x)
=1+kcos2nfx. Then from Eq. (4) the output profile along
the horizontal axis is exactly

O(p) = j:a 11+ k cos 2nfx)V2/\/(31))

X exp[(~1/2)1 + k cos 2rfx)(x - p)?dx.

For arbitrary values of k this integral seems quite intractable.
However, when & is small enough that £2 can be treated as
zero, it can be solved as follows. First, write 1 + k cos 2rfx
as

[T+ (&/2)cos 2rfx ¥~ (A2 ) eoss 27 /x.

Dropping the second term, we have
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(14 Ecos2nfx) = 1 4 (k/2) cos 2rfx,

- and substituting this approximation into the output equation
vields

O(p) =~ fw [(1 +J cos 2rfx) /N2 7))
X exp[(=1/2)(x — p)?]
X expl(~j)(cos 27 fx ) (x - »)3dx,

where j = k/2 and the factor exp{(—1/2)(k/2)%(x ~ p)?
cos? 27fx] has been set equal to one. Expanding the second
exponential factor as a Tavlor series and dropping the terms
containing powers of j greater than one, we have

O() ~ {7 (1 + ) cos 2nfx)/r/TZ7Y)
X exp|(=1/2)x = p)?] X [1 = j(x = p)2cos 2rfx)dx
S TN - e enr
X exp{(=1/2)(x — p)?]dx

+J Jt: {1/7/(2m)]cos 27 fx exp[(~1/2)(x — p)dx

-j? f [1/V 270 (x = p)2cos 2nfx

X expl(=1/2)(x ~ p)?]dx.

Dropping the last term (which is less than J2) and making the
change of variable v = x — p, we abtain

Op)~1-—j j:e [1/7/(27)]02 cos 27f(v + p)

X exp[(=1/2)v?]dv + j j:m [1/7/(2m))

X cos 2nf(v + p) exp|(—1/2)v7dw,

which can be solved exactly. Expanding the cosine factors
into (cos 2m/1)(cos 27fp) — (sin 2w fv)(sin 27/p) and noting
that the integrals involving sine factors all vanish, we have

Op)~ 1~/ cos 2xfp fm [/ @) w2
X cos 2nf exp[(—=1/2)v?]dv
+ jcos 2x/p j‘_m /(27 cos 2nfv exp[{~1/2)v7]de.

The third term can be abitained from integral tables: Tt works
outtof cos 2nfp exp(—2x%(2). To evaluate the second term
we nole that the integral is the Fourier transform of
11/ et exp[(=')?), which is |1 — 27f)?]exp(~2n2f2).
The entire second term then is ~J cos 2xfp times that ex-
pression. Combining all three terms and replacing j with k/2,
we have finally

O(p) = 1 + [22%2 exp(=2n2/2)]k cos 2rfp,
which is Eq. (7).
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APPENDIX A
IDS Cylindrical Kernel Response to a Step Edge

Since much of the analysis is predicated upon evaluation of
the IDS response to an ideal step edge, we include here a short
derivation of the basic properties of the cylindrical kernel IDS

step edge response.

The IDS response O at a point (p,qg) in an output image is the
sum of each of the point spread functions (psf) h at (p,q)-. By
point spread function (kernel), we mean the response of the system
to input of magnitude I at a sample point (x,y) in the input image.
That is

[+ 4]

0(p,q)=j I h(x,y:p,q,I)dxdy

-

The psf's are defined to be surfaces which encompass a
constant volume V above the xy image plane. Without 1loss of
generality we take this volume to be one. The psf is also assumed
to have radial symmetry. For implementation of the psf it is
useful to restrict it to a finite extent, so that the sum can be
calculated "exactly" in a reasonable time. That 1is the sum
includes only those psfs that lie with a radius r, here r’= (x-p)2
+ (y-q)z. The simplest psf is then a cylinder (right circular)
perpendicular to the xy plane of radius r and height 1, ie. h(x,y:
P,49,I) = h(r’,I). We further define the psf suth that the height
1l is proportional to the intensity i.e. 1 = KI. Thus, V=1
= 7r’KI so that the psf is simply,

1
1 0<r<
h(r?,I) = KI{ ATKI

0 elsewhere



Recall the circ function is defined as

1 0<r<1
o - {
0 r21

so that the integral can be writtén

o0

0(p,q)=J I KI(x,y) ¥ (r+mKI)dxdy

- Q0

We now invoke the essential one dimensionality of the original
image i.e. I(x,y) = I(x). Without 1loss of generality we will
consider a step edge along the x direction, then

o] -

O(p,q) = I KI (x) { IC(mﬁT)dy}dx

-0 -0

The limits on the inner integral collapse to + Y, where the kernel
is nonzero.

Then by expressing y = Y(%,p,q9,I) over the kernel we
have

Pa—1

JTKI(x)
2
O(p)=2 KI(X)\;Rf%gy - (x-p)dx

Y

JTKT(x)

where we have lost the dependency on q in the output image.

To procede further we must now be explicit about the image.
Specifically consider a step function at the x axis origin.

I, x<0
1x) = I,+AI x>0



substituting

pP*rg P*ry

2 2 2 2

— ry< - (x- dx +

Try? 4z (x-P) nr,
o,

P-Fg p-r,

o(p) = 5 ,‘[rdz - (x-p? dx

where r, = (1rKIO)'”2 is the radius of the kernel to the left

of the origin and r, = (7K(I, + AI))'”2 is the smaller kernel
to the right of the origin. It is useful to partition the x
axis into the segments corresponding to the different limits
of integration as shown in the Figure below

Io+ AT
IO
1 >
————‘/
R1 R2 R3|R3 R2 R1
\\ _,,/

Figure A-1. Limits of Integration



Over the regions the integrals are:
Rl Ipl > r,
o(p) =1

R2 r, < lpl < r,

2
o(p) = =25 {re? - (x-p)% dx + H(p)
Y,
P-Ty
R3 |pl<r,
0 p+ry
2 2 2 2 2 2
O = - - d <+ - -
®) = X T2 - (x-p)? dx p— Jr,2 - (x-p)

Where H is the Heaviside function

1 x>0
H(x) = {0 x<0

These integrals evaluate to

R1 Ipl > o
o(p) = 1

R2 r, < lpl < b o

o@=1 -} (B \: - sin (£] + 1)

R3 pl<r,

~

O(p) =1 \’ %% W sin- [%%}
1—%) Jl—[:%f - § s (E)

By substituting r; and r, one can immediately
obtain the expressions for the output as a function of the
original step edge intensities. A more succinct form can be

obtained by defining an angle ¥ = sin''(p/r) to give



Rl |p| > r,
o(p) =1
R2 r, <lpl <r
O(p) = 3 - & [y, + siny,) + H(p)
R3 pl<r, )
O(R) =1 - 57 [(¥ + siny) - (v, + siny,) ]

The above functions and their first derivative are
continuous across the region boundaries.

The extrema can be formed by finding 30(p)/sp = 0O
from either the integral or the explicit forms above.
Differentiating the output expression over region 3 gives
their location p’ on the p axis as

p’= + __To¥s
Jrz + RZ
0 8

substituting for r, and r, gives the form

P’ = *[7KI, (w+2)] V2

which should be compared with expression (7a) in Alter-

Gartenberg'.

At this value of p we can find the peak value directly
from the output expression in region 3. The three equivalent

expressions are

172 172
1 _:. . 1+ 1 1
O(p’) =1 + T sin"! [2—_'_8) -7 sin-? (m]
r _ r
=1+ 2sin?' (200 - L sin? [——T—A——;]
Jro? + 1,2 " + 1,
= 1 1 - 3 1
B2 A A Bt 7%

where w = AI/I, is the Weber fraction or contrast at the

step edge. The first form is (73) in Alter-Gartenberg'. The
minimum is then O(-p’) = 2 - O(p’). At infinite contrast the

extrema are 1/2 and 3/2.



APPROACHES TO IDS
RECONSTRUCTION



1.1 Introduction

Given the IDS output, we would like to be able to reconstruct the input. Actually, we
don’t want to recreate the input itself, but a version of the input that has ratios of
reflectances instead of intensities. Currently, Odetics-is using an algorithm that goes
through the output line-by-line, finds peaks and troughs, decodes the ratio of the step
in intensities that is presumed to cause the peak and trough, and reconstructs the step
as a ratio of reflectances. This method is a heuristic one. We can more or less tell
from experience that this should work for certain images and under certain conditions.
However, there is no mathematical proof or formal analysis of the algorithm, its benefits
and drawbacks.

In this report, I will present four different approaches to IDS reconstruction. I haven’t
succeeded in solving the actual problem itself. However, I feel these techniques provide
insight into the problem and may serve as trailheads to those who wish to continue on
the path of reconstruction.

Fligure 1.1 shows a one-dimensional slice of a two-dimensional step input. It also

showé a slice of the' IDS output. The output has odd symmetry about the point (0,1).
L

I,
Ol-)

”n -

> ¥
Figure 1.1: Step input and IDS response
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The peak height depends only on the ratio of the intensities on the two sides. If the
input is due to a step in reflectances that is lit by a uniform illumination, the ratio of
intensities will be independent of the actual illumination.

The output crosses one right where the intensity jump in the input is. The distance
of the peak from the one crossing depends on the actual intensitjes themselves. If the
intensities in the input are both multi};lied by a constant greater than one, the peak
height will remain the same but the peak will move closer to the origin.

The IDS response to a step illustrates a fundamental idea behind reconstruction
processes. This idea is that we want to lose some of the information that is in the _IDS
output. To reconstruct the step as a ratio of intensities we only need to know th‘ree
things — where to put the Jump, what the ratio of the two sides is and which side is
higher. We put the jump right where the one-crossing in the output is. We decode the
ratio of the reflectances of the two sides from the peak height. We make the high side of
the reconstruction the same as the side of the IDS output that has the peak.

Notlce that we didn’t use the information conta.med in the distance of the peak from
the o'ne crossing. This makes sense because this information tells us the absolute values
of the intensities in the input and that is precisely what we want to ignore.

The approaches that I illustrate below ajl attempt to reconstruct intensities instead of
ratios. This comes about because the mathematical results that are available are stated
in terms of the output for a given input and not as-the output for ;—atios within the given
input. In fact, it is impossible to always be able to reconstruct the input from the output.
A simple example of this is an input that is a uniform field. Regardless of the intensity
of the input, the output is always a uniform field whose value is one. Therefore, given

an output that is one everywhere, we can’t tell what the particular intensity of the input



was. However, if we relax the restriction of exact reconstructjon to that of finding the
ratio of all points to any one point, we can easily say that this ratio is one.

Because these approaches attempt an exact reconstruction, we already know that they
will fail. My motivation for demonstrating these techniques is not to actually make the
exact reconstruction, but to provide models and ideas for methods that can be modified
to reconstruct an image of ratios of reﬂéctances. I hope that someone will be able to do

this.

1.2  An important approximation

T

Before I demonstrate the a,pproa,ches to reconstruction, I'd like to derive and explain an
important approximation that I'll use as a bridge between the continuous IDS that is
used to derived mathematical results and the discrete IDS that is used on the computer

for image processing. It is this:

Approximation: The value of the discrete-IDS spread function at (z,y) from the input
Lintensity I at the pizel at (P, q) 1s approzimately equal to the continuous-IDS output
at (z,y) from a square at (p,q) that is the size of the pizel at (p,q) and is uniformly

covered by an intensity I.

Let the square centered at (P, q) have sides of length 2A, with 2A being one pixel

width. The continuous-IDS output at (z,y) from the square at (p,q) is given by

[ [ 1008 {16,000 - 97 + (4 - o]} dpae

Since I(p,q) is constant over the square, we can write the output as

/_AA /_i IS{I [(“"' =P+ (y— q)’]} dp dgq.



Now assume that the square is small enough so that the spread function is approximately
constant over the square. (In practice, the spread functions in the discrete version of IDS
are constructed so that this assumption is true,) Since the spread function is constant,

it can be factored out of the integral to yield

15{1[@ - +w-o7} [ [ dpdy

The integral is just the area of the square. If we choose the unit of length to be one pixel

width, this area will be equal to one. The output becomes
IS{I|= - p)"+ (v - 9)*]}, L

which is the discrete IDS output at. (z,y) from the pixel at (p, q).

We’ll use this equivalence throughout the report. In particular, note that the discrete
IDS input can be considered to be a continuous input made up of little squares of uniform
intensity. Since many of the results in the rest of this report depend on the input
consisting of only regions of uniform intensity, this approximation will prove to be quite

Va,luafble.v

1.3 Orthogonality

The first approach to reconstruction uses orthogonal functions.~'As an example of the
concept of orthogonality, suppose the function f(z) is periodic. It can be expanded in a

Fourier series, namely

flz) = 3 aqems, (1.1)

i=—~o00

where



1 1s an integer
a; is the Fourier coefficient
7 1s /-1

a is the fundamental spatial frequency.

.

To find a;, we multiply both sides of Equation 1.1 by e~**= (k is some integer) and
integrate over one period T (= 2°).

/Tf(m)e—]ka:: de = /‘T i a.e_-,iaz e—;)kaz dr
] o t

1=—00

oo T .
= E ai/ eli=klaz dg (1.2)
0

i=—00

The key to the procedure of orthogonality is that the integral on the right side is given
by

T (i—k)az T fori=k
/;e’ dz = (1.3)

0 otherwise.

Suppose two functions (such as e”*® and e~***) are multiplied together and integrated
{

over some range. If the result is a constant when the parameters in each function are

equal (¢ = k) but zero otherwise, the functions are orthogonal.

To continue the derivation of a;, insert Equation 1.3 into Equation 1.2 to get

T i T fori=Fk
/ f(m)e"’“’"da: = Z a;
0 i=—o0 0 otherwise
= T(I;c
or
[ et
. = — T .
a T Jo ¢ *



The technique which I will now outline is only applicable to inputs that just contain
regions of uniform intensity. Each region must have positive! area, but the area can be
infinite. By the approximation in Section 1.2;~all discrete inputs on the computer can
be treated as continuous inputs with only regions of uniform intensity. In [2, page 71,

Theorem 2.6], I showed that for this type of input the output O(z,y) is given by
.
O(z,y) = S LS{I(z* + ")} *us,(z,y) (1.4)
=1

where
N >1 is the number of regions of distinct intensities
R, is the region containing intensity I;
* is the convolution operator

and ug,(z,y), called an indicator function, is given by

1 for (z,y) € ®;
u’&.’(may) =
0 otherwise.

Under this notation, the input I(z,y) can be written as

(z,y) = quse (z,9).

We want to find ug,(z,y) for all values of 5. Since I; goes with ug (z,y), we can then
reconstruct the input. To find ug,(z,y), we will use a more ger;éra,l version of orthog-
onality in which <> is an unknown operation that replaces integration and Q(Ii,z,y)

is a set of orthogonal functions. ‘'We will require Q(Ii,z,y) to be “orthogonal”? to the

!Throughout this report, “positive” means “greater than zero”.
*I put in quotation marks because the nonzero response in Equation 1.5 is a function, not a constant

as the definition of orthogonality states.



function I, S {Ix(z® + y?)} * ug, (z,y) under the operation <> so that

| for i = k
< QUi 9), LS {I(z? + 4))) rug (2,9 > = { %Y fors (1.5)

0 otherwise.

We reconstruct the input by finding one region ug,(z, y) at a time. To do this, apply

the operator to both sides of Equation 1.4 to get
N
< Q(Ikyxay),o(xay) > = < Q(Ik,x:y)) ZLS {Ii(m2 + yz)} * u.’fi.’(z:y) >
=1

Assume that <> can be moved inside the summation sign. This gives

N
<QUz.9).0(,9) > = 3 < Qi 2,y), LS {Ii(2® +47)} » un,(2,9) >,
i=1
which through the use of Equation 1.5 reduces to

ug,(z,y) fori=k%
< Q(Ik)m, y),O(:c,y) > =

0 otherwise

or

In image processing there are only a finite number of intensities It. We can use Equa-

tion 1.6 to go through the output and find the region in the input that corresponds to

-

each intensity.

As an example, suppose that the operator <> is the convolution operator * and the

function Q(I;,z,y) is such that

§(x, fori =k
QUi,z,y) » LS {L(z* + )} = (z,y) fori

0 otherwise

-~J

u*k(m"y) = < Q(Ik’may)’ O(‘L'7y) > . (16)



Then starting with Equation 1.4, we get

N .
O(,9) = T LS{I(z’ +y")} »un(z,y)

4,

N
Qs y) *O(2,y) = Q(Liyz,y) * Y. LS {L(z* +4°)} » ug (=, y)
i=1

N
= 2 Q2,9) * LS {I(=* + ")} x un(2,y)
N
- [Q(Ik:z3y) * I,'S{I,‘(:Ez + y2)}] * UR_.(ZZ, y)

1
= §(z,y) * ug, (z,y).

-

Since the convolution of a delta function with a second function is the second function

itself, the above equation becomes
uﬂh(may) = Q(Ik,m,y) * O(a:,y),

which is what we were looking for.
Of course, the trick is to find an operator <> and a set of functions Q(Ii,z,y) that will
make this technique work. Moreover, even if we found these items, this method would still

have ‘o be modified to produce ratios of reflectances and not an exact reconstruction.

1.4 Algebraic reconstruction

Each point in the IDS output is the sum of spread functions fromnumerous input points.
Given a group of such sums, can we deduce the constituent input values? I will now study
this idea, which I call algebraic reconstruction.

Figure 1.2 is a very simple example. The input contains only two pixels. Let X(Y)
be the value at pixel Y of the spread function centered at pixel X. In Figure 1.2, 4;(4,)

is the value at the right pixel of the spread function from the left pixel.

8



A; Ay

Figure 1.2: Input of two pixels

There are four unknowns in this problem — A1(A1), Ar(A42), A2(A4;), A2(Ay). We are
given O(A;) and O(A4,), the outputs at the two pixels. Each output is the sum of the
spread function centered above it and the spread function from the other pixel. Thus we

get two equations,

O(4:) = Ai(A1)+ 4:(4)

O(A2) = Ai(4;)+ A5(4,) | (1.7)

But we also know that the volume under the spread function is one. This means that
the sum of all the values of any spread function must be one. This gives us another two

equations,
.

1 = A)(4)+ AI(A-_,)

1 = Ay(41) + Ay(4,) (1.8)

We now have four equations in four unknowns. Unfortunately, the equations aren’t
independent. We can see this by noting that the right side of the sum of the first two
equations is the same as the right side of the sum of the second two equations. Thus
there are more unknowns than (independent) equations.

We’re also operating under other restrictions. The spread functions are non-negative



and the center heights are positive.® This leads to the four restrictions

A(4;) > 0
Ai(4z2) > 0
Ay(4;) > 0
A(4;) > 0

To fully understand the problem in this example, we would have to study the solutions
to equations 1.7 and 1.8 under the above four restrictions.

When there are more than two input pixels (there usually are!), the situation is the
same. Suppose the input is an nxn array of pixels. There are n? input points and n?
output points. Since each output is a sum of the spread functions from the inputs, there
are n? equations similar to those in Equation 1.7. Since each of the spread functions from
the n? inputs must sum to one, there will be n2 more equations like Equation 1.8. This
gives a total of 2n? equations. However, as before, the sum of the two sets of equations is
the same, so there are really 2n% — 1 independent equations. Each of the center heights
1nust!be positive and the other values of the spread function must be non-negative.

On the computer, all spread functions are set to zero past a certain distance. Call
this maximum distance from the center r. There are approximately nr? values for each
spread function. This can be reduced to about —é-vrrz different values by symmetry argu-
ments. Thus each image contains about %wrznz unknowns, but only 2n? — 1 independent
equations. In general, there are always more unknowns than independent equations,

and so there is no unique solution to the problem. Nevertheless, I think that algebraic

3This latter restriction comes about because the center height is proportional (with a positive constant

of proportionality) to the intensity, and intensities in IDS are defined to be positive,

10



(e

Figure 1.3: CAT scan

reconstruction needs to be investigated further for two reasons.

The first is that the technique attempts to reconstruct the values of the inputs ex-
actly. As I explained in Section 1.1, we really want to find the ratios of reflectances. This
involves a loss of information. It would be good to examine the solutions to the underde-
termined equations that occur in algebraic reconstruction. What kind of information is

lost in these equations? Is the loss such that the solution involves ratios of reflectances?

The second reason to further pursue algebraic reconstruction is that it may be similar
to thfs_techniques used in computer-aided tomography (::CAT). Figure 1.3 shows the idea
of CAT scans. There is a two-dimensional ob ject which partially absorbs x-rays. The
absorption varies throughout the object and is given (in polar coordinates) by u(r, ).
During a scan, a beam of x-rays passes through the object at a particular angle. The input
intensity of the beam is known and the output intensity is meas;red. If this procedure
is repeated at many different angles, the absorption can be accurately approximated at
all points (r, ).

For a given angle 6, the relationship between the input intensity I of the beam and

11



the output intensity O(9) is

0(8) = re Jowtrordr

4

where the integral is along the path of the beam. Loosely speaking, even though the
output always depends on a sum (integral) of the values we're trying to reconstruct
(u(r,6) for various r and 6), we can still determine the absorption at each individual
point (r,8).

The situation in IDS is similar, though not exactly the same. Each output depends
on a sum of functions of the object we’re trying to reconstruct. The differences between
IDS and CAT scans are that in IDS the sum is over two dimensions (2 neighboring area)
instead of one dimension and the input is unknown. However, the concepts are similar

and it would be worthwhile to pursue the analogy further.

1.5 Geometry at corners

The previous approaches to reconstruction involve algebraic techniques. Another tack
towa;ds éolving the problem is to look at the geometry of the output. By graphing
the output as a height above the zy-plane, we get a three-dimensional landscape. As
I explained in Section 1.1, there are geometrical features in the output that relate to
geometrical features in the input. For example, in the step response, the output crosses
one right where the jump in the input occurs. A geometrical approach to reconstruction
would be to go through the output and look for one-crossings, peaks, valleys and other
such figures and reconstruct the input from information in these figures. This idea has

been used by people at NASA and is similar to the one currently being tested at Odetics.

A big problem with the geometrical approach is that it is hard to reconstruct the

12



Figure 1.4: Bisector at a corner

input at spots where there is a lot of detail, such as the vertex where polygons meet. (I'll
discuss the specific nature of the problem in the next section.) In this section, I'd like to
propose some mathematical results which may help determine corners more accurately.

In [2, page 110, Theorem 2.8], I showed that, under fairly general conditions, the
output at the vertices of polygons is exactly one. I propose here that the local extrema
(maxima or minima) occur along the bisector of the vertex angle. (In Figure 1.4, the
dashed line is the bisector.) This proposition should be investigated and proven or
disproven. For the rest of this section, I will assume that it is true.

These two properties of vertices could be used to pinpoint the intersection of two
edges. Suppose that we have detected two edge segments, have calculated the formulas
of the lines going through them and that we know that t::hese lines intersect. Should these
segments be extended to their intersection point to form a corner?

One supporting piece of evidence would be a pixel at the intersection whose value
is one. In the continuous version of IDS, the point right at the intersection would be
exactly one. Because IDS is discrete on the computer, we would\'check the pixels close
to the calculated intersection (probably the nearest four pixels) to see if one of them
is approximately one. If it were one, we would have more confidence in extending the
segments.

We could also calculate the bisector of the angle formed by the two intersecting lines

13
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and check on the bisector and near the intersection for a local extremum. If we found
an extremum, we would feel even more confident in constructing the corner. Moreover,
it might turn out that the distance of the ettremum to the intersection may provide
information about the intensities around the corner. If Odetics is going to pursue a
geometric form of reconstruction, it would be worthwhile to have someone investigate

this proposition on the extrema and the bisector.

1.6 One-dimensional response

Figure 1.1 is the IDS response to a step input. To reconstruct a step of ratics, we could
find the one-crossing, determine the ratio of the two sides from the peak height, and
create a step whose two sides are in the desired ratio and whose jump occurs right at the
one crossing.

Now imagine that to the right of the step in the input there is another step. If the two
steps are far enough apart, the output will just be two step responses that are separated
by a!ilz_a,rg‘e distance. However, if the steps are close to:.ea,ch other, the output changes.
The trough from the output to the step on the right merges with the peak from the
output to the step on the left and decreases its height. If we were to calculate the ratio
of the two sides of the step on the left, the answer would not be correct because the
peak height would be smaller than it should be. If the step on the right were a step
down in intensity, the left side of its output would be a peak. If the two steps were close
enough, the two peaks would merge and the peak in the output of the left step would be
higher than it should be. The ratio of reflectances calculated from this peak would not

be correct. We call this change in output heights due to steps that are too close together

14
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Figure 1.5: One-dimensional input

the interference effect.

In this section, I will state, prove and discuss a theorem about the IDS response to
certain one-dimensional patterns. I haven’t found the result to be helpful in actually
leading to a reconstruction of the IDS input. Rather, it illuminates and quantifies the
problem of interference in IDS reconstruction.

The theorem holds only for one-dimensional patterns and for inputs that consist
solely of regions of uniform intensity. On the computer, this latter restriction is not
important because of the approximation in Section 1.2. However, the former restriction
is quite severe. Although patterns will in general not be one-dimensional, this theorem
illustrates the problems with reconstruction in the simplest case. Interference only gets
worse in two dimensions. ‘.

Actually, the theorem may have some immediate practical use. The current technique
for reconstruction at Odetics involves only one-dimensional scans of the output. Thus as

far as that method is valid, the theorem may also be valid and applicable.
Theorem 1 Suppose the tnput varies only in one dimension and is composed solely of
regions of uniform intensity. Let there be N regions and thus N — 1 jumps or changes in
intensity. Then the IDS output O(z) to the input is given by

N-1

O(z) = Y [Oi(x)—1]+1 (1.9)

=1

15
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THE DETAILED SPECIFICATIONS OF THE SONY XC-77 CAMERA

E-1.
USE OR DISCLOSURE OF DATA CONTAINED ON THIS SHEET IS l? TO THE RESTRICTION ON THE TITLE PAGE OF THIS DOCUMENT.
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SECTION 1
OPERATION

1-1. FEATURES

The XC-77/77CZis a monochrome viceo camera module
which uses a solld state image sensor — he CCDH
{Charge Coupled Devicae).

High quality image

High quality, fine image is mace possible by a large
numbper of picture eiements, as much 23 768x483 for
XC-77 ang 753x381 for XC-77CE.

The XC-77CE's picture elements are equally arrayed in
vertical and horizontal directions, and allow easy ag-
dressing. This makes XC-77CE most suitable for image
Frocessing systems which require highly accurate ag-.
cressing.

Adaptability to diversified signal processing

« Gain can e internally selected either the AGC (Auto-

natic Gain Control) or Fixed, ang the y (gamma) can de
Set either to the compensation mode or ‘o the !ixed (1)
moce.

The aczumulation moda of the electrical charge can be
internaily changed from the frame accumulation to the
field accumuiation. This enables the non-interiace mode
sensitivity to be elevated Up to the equivalent lavel (o the
sensitivity of the inlerlace mogde By entering signals into
the external syn¢ input for the setling of the non.
interiace mode.

Three types of external sync signals

Syncnronization with other Cameras is possible by

entering the three types of signals from the external

sync signal generator. The Capture range is set as wide
as =1% of the horizontal frequency.

HD, VD signals: external synchronization is applied in
accorcance with the system, either the intarlace or
non-interiace system, which s auvtomatically iden.
tified by the HD, VD signals.

" VBS (Video, Burst, Sync) signal: the camera module Is

synchronized with the VBS signal (BB signal or com-
posite synce signal) (The Sync system, whether by
HD/VD signal or VBS signal, Is automatically seiected
Gepending on the input signal.)

Reset puise: this is used to set the timing for the reag-
out of register contents at an arbitrary moment.

Internal sync signal output

Clock signals are constantly outout, ND sig~al and ‘elg
index signal can be Outlput to trhe 1ZP connecier Sy alier-
ing the internal wiring.

Solld body

The bogy consists of aluminum ciecast ang sieel Sheet,
On the bottom are 2 screw holes (reference noles) wnich
can be usad o keep Ceviation of the optical axis at a
minimum.

Compnlblllty with XC.37 series

XC-T7177CE has common types of VIDEQ OUT connecior
and 12-pin multi-connector 2in assignment win ihe -
XC37 series, as weil as having icenticay Crcss section
external dimensions, ang €an replace the XC-37 series
camera moduie,

Long life and high stability

Precise image geometry

Low lag and litt]e image sticking

High resistance to vibration and mechanical shock
Quick start-up

Shooting in a strong magnetic fleid

Low power consumption (2.2w)

1-1(E)




1.2. COMPOSITION

The CCD video camera module system consists of the
fellcwing optioral procucis which can be purchased

separately.

Camera cables
CCXC-12P02 (2m)
CCXC-12P05 (5m)
CCXC-12P10 (10m)
CCXC-12P25 (258m)

. VCT-37 tripod attachment

XC-7777CE CCD video camera module

VCL-16Y-M standard lens
This is a standard lens of { = 18 mm, F1.4. The iris and

locus are adjusted manually.

JB8-77 Junction box
This is attached to the camera module using the CCXC-

12P02/12P0S/12P10/12P25 camera cable and will supply
power, transmit video signals, and exchange external
sync signals.

PC-XCO04 4-pin connector

This is used to attach the lens cord of the auto iris lens
10 the LENS connector on the XC-77/77CE video camera
module.

.t
XC-77/17CE CCD vigeo
camera module

VCL-16Y-M stancard lens

vB-77 junciion box

PC-XC04 4-pin connecior

PC-XC12 12-pin connector
This connector is prepared for system-up, and used 1o
connect to the DC IN/SYNC connector of the camera

module.

VCT-37 tripod attachment
To attach the video camera module 10 a {ripod, use this

tripod attachment.

CCXC-12P02 (2m), 12P05 (5m), 12P10 (10m) and 12P28

(25m) camera cables

These cables can be attached 10 the 12-pin DC INISYNC
connector on the rear of the camera module 10 supply
power, transmitl video signals and exchange sync

signals.

A (s ol (Th
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9 DC INISYNC (DC power input/sync) connector (12-pin)
Connect a CCXC-12PC2, CCXC-12P0S, CCXC-12P10 or
CCXC-12P25 camera cable 10 this connector 10 supply
nower (12 V OC) Irom an exiernal power source and out-
cul the video signal from the video camera module. When
a sync signai generator is connected to supply the sync
signal (VBS, VS, BS or HO/VD), the camera rrzqcule canbe
operated on external sync signals. Ao

The pin configuration of this connector is shown in the
giagram beiow.

Signal External Sync mode Camera Sync |
Pin No. =D, VD VBS/VS RESTART RESET outpul i
1 Ground Ground Ground Ground |
2 +12V <12V +12V +12V i
3 Video output Viceo output Video output viceo output {
(ground) (ground) {ground) (ground) |
4 Video output Video output Video output Viceo output i
(signal) (signa:) (signal) {signal) |
5 HO input _ HD Input =D output
(ground) {ground) {ground)
6 HD input _ HD input HO sutput®
{signal) (signal) (signal)
7 VO Input VBS Input RESET PULSE FIELD INCEX®
(signal) {signal) (signal) oulput (signal)
8 - _ _ CLCCK output
(ground)
9 - _ - CLOCK output
(signal)
10 Ground Ground) —_ Ground
1" +12V +12V v - +12V
12 VO input VBS input RESET PULSE FIELD INDEX
{ground) (ground) (ground) oulput (ground)

0 VIDEO OUT (output) connector (BNC connector)

The video signal from the video camera module is output
from this connector. This connector can be used only
when a CCXC-12P02 camera cable is connecled 10 the
DC INISYNC connector and the video output of the 12-pin
connector of the CCXC-12P02 cable is not lerminated
with 75 ohms,

1-4(E)
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camaera in order to output the HO and FIELD INDEX signals.




1-3:3. JB-77 JUNCTION BOX

Front

Q ot amg

€3 CAMERA connector
OPIlot Lamp

Lights up when 12V DC is input.

0 CAMERA connector (12-pin)
Connect a CCXC-12P02/12PCS/12P10 or CCXC-12P25
camera cable to this connector 1o supply power (12 V DO)
from an external power source and external sync signais
from an external sync system and input the video signal
from the viceo camera module.

« YIDEO OUT (output) connector (BNC connectorn)

The video signal from the viceo camera module is output
from this connector when connected 10 a video monitor
or VTR etc.

0 CLOCK OUT (intemnal sync signal output) connector
Clock signal is output through this connecior for the in-
dependent use of the camera module.

-0\

VICEQ OUT zzrreciar

CLOCK OUT correcior

VO iN connectior

HD IN conrecior

QVD IN connector (BNC connecton

Connect the sync signal generator to Input the VD sigral

or the VBS signal. This enabies the camera mocuie (o e

operaled on external sync sigrals.

* When receiving VD signals, input =D signals io tre =D
connector,

* When recelving VBS signais, ¢o net Input HC signais ‘2
the HD connector,

For the independent use of the camera moduie, 'he fieid

index signal (FLD, VD or composite sync signal) can te

output by changing the camera's internal wiring.

(D HD IN connector

Connect the sync signal generator to input the HD sigral.’

Combining it with the VD signal input from VD iN connec.
tor enables the camera module {0 be operated on exier-
nal sync signals.

For the independent use of the camera module, the =D
signal can be output by changing ine camera’'s interral
witing.
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| 1-4. CONNECTIONS
1-4-1, WHEN JUNCTION BOX IS USED

XC-77/77CE CCD L
video camera module DC INISYNC

D T
vOIO Lanal s oID\A §

VCL-16Y-M

Image processor,
monitor of VTR

CCXC-12P02/12P05/12P10/12P25

/ camera cable

toDCIN12YV
— +, — conneclor

75-ohm ccaxial cable
—
A
A JB-77 junction box
o o)
HD signal
75-0hm coaxial cable
VD or VBS signal
DC 12 V power source
X

| Note

When applying external sync by VBS or VB signal, the
image may be affected by VBS signal during gen lock if a
long type CCXC cable I3 used (especiaily CCXC-12P25).
When this occurs use only BS or an S signals.

1-8(E)




1.5.

Moces for the following 8 items can be swilched. At the
time of delivery, each item is set to the upper moce in the

INITIALIZATION OF THE MODE 1.6.

list shown Delow.

em ! Mode Remarks  *¢
FIX GAIN Gain fix
AGC AGC Automatic gain control
1 No y compensation
! compensate | y compensation
sus1 Frame accumulation in use
Sus sus2 Fleld accumulation in use
EIA ROM (EIA mode)
|EWCCIR Team ROM (CCIR mode)
"cRAME/ |FRAME Frame accumulation
~IELD FIELD Field accumulation
NORMAL Normal scanning
FRAME INVERSION | Inversion of even number
tisld and odd number field
RESTART |[OFF Frame not synchronizing
RESET ON Frame synchronizing
ElA SG (EIA mode)
EIWCCIR Tcem SG (CCIR mode)
Note

EIACCIR moce seilings vary depending on the (ofels)

(EVIA/CCIR).

PRECAUTIONS

Power source
Operates on 12 V DC. Use a stable power source, !rzo
from rlpples or noise.

Foreign objects

Do not spill any liquid, drop any inflammabie or metal c:-
jects inside. This could result in !lre, electnitication,
malfunction or accicent.

Do nol wrap in cloth while in operation

Locations for operation and storage

Avoid operating or storing in the following places.

« An extremely hot or cold location,
Operating temperature: 0°C to 40°C (32°F to 104°F)

* A location exposed to high humidity or dust.

« A localion axposed to rain.

« A location subjected to strong vibratlons.

« A location near & TV or radio station which raciates
high powered radio frequencles.

Care

Clean the dust on the surface of the lens and ogtical
filler with a biower. Ciean the exterior with a scit, cry
cloth. If it becomes very dirty, clean with a cloth slignily
moistened with a mild detergent solution. Do not use any
type of solvent, such as aicohol or benzine, which may
damage the finish.

1-10(E)
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COMPREHENSIVE SPECIFICATIONS

2-1. SPECIFICATIONS

<CAMERA MODULE XC-77>
Pickup Device

Piciure eiements

Sensing srea

Cptical black
Verucal crive frequency
Horizontal drive frequency
Signai system
Structure
Cell size
Chip size
Optical System
Lens mount
Frange back length
Sync Svsiem
Exzernal sync input

gxternal sync frequency tolerancs
Jitzer
Locking time when power is on.
Scanning Sysiem
Viceo Quiput

Horizontal Resolution
Vertical Effective iines
Sensitivity

Minimum lllumination

S/N ratio
Power Requirement
Power Voitage Tolerance
Power Consumption
Weight
Camera module
Tripod attachment
Camera cable (2 m)
{Sm)
{10 m)
{25 m)
Junction box
Storage Tempersture
Operating Temperature
Shock resistance
Storage Humidity
Ogerating Humidity

<STANDARD LENS VCL-16Y:M>
Focal Lengin

Maximum Aperture Ratio

Iris Control

Filter Thread

Mount

Weight

XC.77 Q)

SECTION 2

Interling transfer CCO

768 (H) x 493 (V)

8.8 mm=x 6.6 mm

{the same a3,the 2/3-inch camera tute)
22 pixels each horizontal line
18.734 kH2

9.545 MH2

ElA stancarg

Interline transfer

17 um H x 13 um (V)

10.0 mm (H) x.9.3 mm (V)

C mount
17.526 mm
Internal/€xternal autmatic change
V8S, VS, 88
{SYNC LEVEL 0.3 Vp-p = 6 ¢B)
=1%
Within = 100 n sec
Within 10 sec
2 : 1V interface : 525 lines
1.0 Vp-p sync negative, 75 ohms
untalancsd.
570 @ TV lines
2: 1 Interlace ; 485 lines
400 Luxes with F4 {y ON/odB)

3 Lluxes, F1.4

{without an infrared cut filter)
50 ¢8

pci2v

DC10.5VvAaiSY

2.2 W

190 g IXC-77)

15 g (VCT-37)

130 g (CCXC-12P02)
295 g (CCXC-12POS)
560 g (CCXC-12P10)
1.4 Kg (CCXC-12P25)
170 g (JB-77)

=30¢C ~ =60°C ~
0°C ~ 40°C

70 G

Within 90%

Within 70%

16 mm

1:1.4

F1.4~ F18
M25.5mmxP 0.5mm
C mount

509
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5.2 CONNECTORS’ PIN FUNCTION

12.P Mulhconnecior (External view}

4P Lens Connector (External view)

1

e,
XTERNA NC M
| o EXTERNAL SYNC MODE ‘SYSQ:;:‘SUS PIN NO. SIGNAL | SPECIFICATION
80| o, vD VBSIVS as_sE;::T SuTPUT 1 +12 V OUT DC 12 vV OUTPUT
i = ;
- — 2 GND GN o
P GND GND | GND | GND 2
T2 | -12av | ev2av | «12v | 12 v 2 ne NG
- * - -
! | 2 4 VS OUT VIDEO SIGNAL OUTAUT
: | VIDEO VIDEO VIDEO VIOEQ o —
.3 | ouTPUT OUTPUT ouTPLT OUTPUT Tt
! IGND) IGND} {GNC) (GNO})
!
; VICED VIDEQ VIDED VIDEO
‘a4 | outPuT ouTPUT ouTPUT ouTPUT
! {SIGNAL) {SIGNAL) ISIGNAL) ISIGNAL) ¢
i 5 1O INPUT HD INPUT O OQUTPUT
; (GNDY IGND! (IGND1
i 6 D INPUT HD INPUT | HD OUTPUT
: 1SIGNAL) ISIGNAL) {SIGNAL)
vO INPUT | VBS INPUT |RESET PULSE| FIELD INDEX

7 (SIGNAL) (SIGNALI (SIGNAL) OUTPUT
. ISIGNAL)
| cLOCK
i s _ — —_— OUTPUT
; IGND)
' cLock
‘ 9 —_ —_— — OUTPUT
‘ ISIGNAL]
i 10 GND GND —_— GMD
[ «12V 12V — +12V
f VO INPUT | vBS INPUT |RESET PULSE| FIELD INDEX
i 12 IGND) IGND} IGNO) QUTPUT

(GND) >




2-4. External Synchronization

There are three external synchronization moces:
1. VS/VBS mode

2. MD and VD mode

3. RESTART RESET mode

* Interlace and noninterlace

Ooperation can e performed in either nterlace o ---.
interlace mode by changing the input congiticn of e ::
signal. See Figure 1.

* Interlace

To operate in the interlace mode, set 1he period of the V3

signal to (A + 1/2)H. Ais aninteger, 244 15 1037, tnoimer

words, the phase of the leading edge of the VD sigral
- 3gainst the leading edge of the HD signal is changec ‘cr
each VO signal. The field changes from ODD 1o EVEN anc
10 ODO, repeatedly during operation in the interlace moce.
At this time, the number of scanning lines per frame is A
+ 1.
* Non-interlacs
To operate in the non-interlace moce, set :He period of the
VO signal to A H. A is an integer, 244 10 1037, In oirer
words, the phase of the leading edge of 1he VD sigral
against the leading edge of the HD signal is not changex
for each VO sigral, and the field ODD or EVEN remains un-
changed for operstion in the non-interlace moce. The
number of scanning lines is A; this is haif of the number of
scanning iines for operation inthe interlace moce. The sen-
sitivity is hall of the sensitivity proviced in the interiace
mode, when the frame is stored.

2-4.1. VS/VBS mode

The VS/VBS mode provides external synchronization by
supplying 3 normal composite signal, VS or V8S, 10 pin 7
of the 12-pin connector.

2-4.2. HD and VD moce

: The HD and VO mode provides external synchronization by
v supplying an HD signal to pin 6 ang a VO sigral to pin 7 of
’ the 12-pin connector.

* Input conditions of HD and VD signais
+ Frequency (period]
HD: 15.734 kHz =1% (63.56 us =1 %)
vD: 244 10 1023 1/2 H
* The maximum number of vertical effective lines is 486
in the interlace mode.
In the non-interlace mode, it is 242 for both the ODD
field and the EVEN fieid.

» Phase

COMPHEBENDSIVE Lo CHICA TICNS

[.

]
$
]

"’ J ‘ __J—
: |
[ ' !
11" R T
' 2co ; '
fietd
3
i

S
‘e 2,5P8 358,
1381 238

vD -
EVEN 3
tiaid s S
033 {183,8

Ifll.l- 238}

The figure in parentheses { | indicates the number of clock pulses

ed when the phase shift between the trailing edge of the
VD signal and the trailing edge of the MO signal is between
a tead of 15.2 us and 3 1ag of 16.5 us. The EVEN field is
provided when the phase shift between the trailing edge of
the VD signal and the point 1/2H from the trailing edge of
the HMD signal is between a lead of 15.2 us and a lag of

16.5 us.

{
!
] As shown in the illustration above, the QDD field is provid-
|

xC.77 1wl
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2 COMPRLUMENSIVE SPECHICATIONS ”I

2-5. Mode Setting

The XC-77 can switch the cceration modce, depending on

the use.
A,
The modes are set on ine PR-83, SG-119, ang MB.136

boards.

PR-89 board
,’ item { _Moce | SHORT | CPEN |
{ soc i AGC | AGC | FIX
! - FIX GAIN | FIX | AGC
i ! oo 2
l ‘ COMPENSATE] 72 | »1
/ i | 3| | 2
| WHITE CLIP A S '
; CUP AT CLPl -2 | »n
| FRAME SUB 1
| cus _Frame ]S | sus2 |
I FIELD | SUB2 | sus 1 |
$G-118 board
Item | Moce I M7 QOPEN
CEIA R 7 R 6
IA/CCIR }
Bla/cc /CCIR R 6 R 7
FRAME R 1 R 2
[
FRAME/FIELD FIELD R 2 W)
NORMAL R23 R28
Fl
ELD INVERSION| _R28 R23
NORMAL R24 R29
RESTART RESET RESET A29 R24
EIA R27 R22
£IA/CCIR
gia/cc CCIR R22 R27
* The vaiue of all resistors is 10 kQ.
MB-136 board
Item | Mode J Mt OPEN

NORMAL | R35

RESTART RESET

RESET | _—"| R3S

*The value of resistors R3S is 220 kQ.

¢ Explanation of all operation modes

« VIDEQ GAIN moce (AGC/FIX GAINJ
Set the gain of the video output signal with this mode.
When 1t is set 1o AGC, the automatic gain control

functions.

When it is set to FIX GAIN, a fixed Gain is obtaired.

The setting is performed with the AGC :race on :he 5. EE)
Soard. To set the gain to AGC. connect the AGC eng arz
disconnect the FIX end. To set the gain 1o FiX GAIN, 2z~
nect the FIX end. To set the gain to FIX GAIN, connect - e
FIX end and disconnect the AGC end.

The factory setting is FIX GAIN.

+ Gamma compensation moce (1/COMPENSATICN]

Set the gamma correction of the video outlput sigral v
this mode. When the gamma is set 10 COMPEN ATZ.
video signals for which gamma correction is performes a+e
cutput. When it is set 10 1, no gamms correction s cere
formed for viceo signals. This setling crovices v.zeo
signals proportional to the smount cf light from t~e opie=s.
The setting is performed with the gammaya and white ¢'2
traces on the PR-89 board. To set COMPENSATE. conrec:
the gamma 2 encs of both gamma and white clip traces.
and gisconnect the gamma 1 ends. To set 1, connect -
gamma 1 ends of both gamms and white clip ;a. erns, 2~z
disconnect the gamma 2 end.

The faciory setting is 1,

+ ElA/CCIR mode (EJA/CCIR)

Set the signal system of the video sutput signal with n:s
mode.

Always set the signal system 10 £lA,

« Storage mode (FRAME/FIELD)

Set the period in which a signal charge is read from :-e
photosensor in the CCD with this mode.

When it is sst to FIELD, a signal charge is read for sacn
tield. When it is set to FRAME, a signal charge is reac for

* esch frame. Note that if the FRAME mode is set for ogera-

tion in the non-interiace mode, the sensitivity is half of the
sansitivity provided in the interisce mode.

The setting is performed with the SUB tracs on the PR.E2
board and FRAME/FIELD trace on the SG-119 board.

To set the period to FIELD, connect the SUB1 end of the
SUB pattern, and disconnect the SUB2 end. Mount tnen
R1 (10 kQ) on the FRAME/FIELD trace, and demount R2.
To set the period 10 FRAME, connect the SUB2 end, anc
disconnect the SUB1 end. Mount then R2 {10 kQ) on tne
FRAME/FIELD trace and demount R1,

The factory setting is FRAME,

xC-77 vl



2 COMPREHENSIVE SPLCIFICATIONS l

- a

2-6. THEORY OF OPERATION

<Operation principle of the CCD>

A CCD iCharge Coupled Device) consists g;l MOS-(Meral-
Oxice-Semiconductor] capacitors arranged in a regular
array.

it basically performs three funclions connected with
hangling charges.

1. Photcelacine conversion (photosansor)

Incident light generates charges on the MOS capacitors,
with the quanuty of charge being proportional 1o the
brightness.

2. Accumulation of charges

When a voltage is applied 10 the electroces of the MCS
Capacitors, an electric potential well is formed in the
silicon layer. The charge is accumuliated in this well,

3. Transmission of charge

When a high voltage is applied to the elecirodes, s Ceeper
well is formed. when a iow voitags is applied. a shallower
well is formed, In the CCD, this property is used 0
transmit the charge. When & high voltage is applied to the
electroces, a deep slectric potential well is formed, and
charge flows in from neighboring well. When this is
fepeatad over and over among the reguiarly srranged elec-
trodes, the charge is ransferred from ones MOS capacitor
to another. This is the principle of CCOD charge

transmission.
<Maechanism of CCD. charge transfer>

1. Vertical transfer
The vertical shift register transfers charges using a four-
phase crive mode. Figure 1 shows an example of the
changes which can occur in potential wells in successive
time intervals.
At 10, the electrods voltages are (V1 = V2) > (V] = V4),
30 the potential wells are deeper toward the electrode at
the higher voitages V1 and V2. Charges sccumulate in
these deep wells. At t1, the electrods voltages are (V] =
V2 = V3) > (V4), s0 the charges accumulate in the wells
toward the elecirode at V1, V2 and V3. At 12, the elec-
trode voltages are (V2 = V3) > (V4 = V1), so the charges
accumuiate in the wells toward 1h¢ electrode at V2 and
V3.
Electrode voitage states at t3 and after are shown below.

13(V2 = V3 = Vv4) > (V1)

14 (V3 = V4) > (V1 = V2)

t5(V4) > (V1 = V2 = V3)

18 (V4 = V1) > (V2 = Vv3)

17 (V4 = V1 = V2) > (V3)

18 (VT = V2) > (V3 = V4] (Initial state)
These operations are repeated to execute the vertical
transfer.

vi
v2
v3
va
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ve
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<SH-27 board>

't contains a sample ang hold circuit. CCD autput signais
sent frem the BI-12 board are divi0ed into two Bolh signals
are sampled and held by a sampling and holding puises
'SHP. SHC1. One signal s sampled and heid three umes by
these culses; in orger of the SHP, SHD and SHP pulses.
The other signal s sampled and held two imes by the SHOD
puise and then SHP pulse. The gilference of these two
signal removes a noise component of CCO output signal ta
odtain the viceo signal, using a cifferential amgiif:er ¢con-
s:sting of 016 through Q19. The video sigral from the gif-
‘erential amphfier is sent 10 the PR-89 board.

<PR-89 board>

It contains 2 viceo signal processing circuit, which con-
verts the vigeo signat from the SH-27 board into a vigeo
signal of ElA stancard. The video signal from the SH-27
board is fed 10 IC1. IC1 containg an auto-iris circuit and 8
gain control amplitier for AGC. The signal from the gain
control amplifier passes through a low-pass filter FL1 and
's then fed t0 IC2. In IC2, various signal processings such
as ciamping, gamma correction, wnite clipping, bianking
muxing, setup acdition, and sync sigral mixing are ex-
ecuted. The resultant signal s then passed through an out-
put driver Circuit censisung of Q1 througn CB anc sent
from this board,

<CN-163 board>

It connects the MB-136 board with each external connec-
tor. 12-pin multiconrector {OC I‘N/SYNC connector), 4-pin
connector (LENS connector] and BNC connector {VIDEO
OUT connectorl are mounted on this board. At 12-0in
multiconnector, +12 V power voltage, exterral syn-
chronizing signais (EXT HD, EXT VD, RESET PULSE, VBS
and VS) are input and the video signal {VS) and syn-
chronizing signais (CLOCK, HD, FIELD INDEX) are output.
12-pin multiconnector /0 signals varies sccording to
selection of sync mode(internal sync or external sync
model. Refer to Section 2-2 in details. +12 V power supply
and video signal for auto-itis lens are output from 4-pin
connector. The video signal (VS) is output from the BNC
connecior,

<RG-18 board>
It supphes a OC voitage 10 be applied to CCD driving clock
generator and CCD substrate.

2-20

<MB.136 board>

It contains an external synchronizing signal cetection ¢ir.
cuit, 1820 fh oscillator, DC-10-DC converter and CCOcrv-
ing clock generator. When external synchronizing sigra:s
are supplied !0 this board, the cameras automaticalty
selects external sync mode and outputs 2 video signal syn-
chronized with the exterral synchronizing signal. For ex-
ternal syachronizing, EXT VO and EXT MO, or EXT SYNC,
or EXT HD and RESET PULSE can be used. When EXT =D
and EXT VD, or EXT HD and RESET PULSE are suppiieg,
the MB-136 board wave-shapes these signals using 21,
Q2. Q3 and IC7 and outputs them 10 the SG-119 bearg.

When EXT SYNC of VBS or VS is supoiied, tnis tca's
detects only a sync component using Q2, C3 anc IC7. ara
wave-shapes it. The resuitant SYNC signal is output 1o ihe
S$G-119 board.

1820 fh oscillator 13 subdivided into two. which are for ex-
ternal and internal synchronizing. In the internaf svrc
mode, the oscillator using a crystal csciflator (X1}
operates. in the ex:ernal sync mode, the voliage controllez
oscillator VCO which is an LC oscillator operates. The VCO
can vary oscillation frequency within =1%. A coaurgl
volitage of VCO sre supplied between O V and .5 V. When
the control voitage is 2.8 V, the cscillation frequency is se:
to be 28.6363 MHz (= 1820 {h).

The clock sigrial of 1820 fh is fed to the CCD driving ¢lzck
generator. The ODC-to-OC ccnverter converts :re
externally-supplied OC (+12 V) into four DC voitages:
+1SV, +10V, +7 V, and +5 V. These voltages are fec 1o
each board.

CCD driving clock generator gensrates :he clock sicnal
necessary to drive the CCD. When the HD and VD signa's
from the SG-119 board and the clock signal of 1820 {h
from the 1820 fh oscillator are fed o IC1.

It outputs the following signals.

CLOCK:  The clock signal of 810 fh (half the clock signal
of 1820 fh)
H1, H2: Two-phase clock signal

These are used to drive the horizontal shilt
register and to transfer the signal charges.
V1 to V4: Four-phase clock signal
These are used to drive the wvertical shift
régister and to transfes the signal charges.
PG: Precharge gate control pulse
A precharge gate is the gate of the output sec-
tion connected 1o the horizontal register. This
gate is controlled by this pulse to convert a
transferred signal charge into the voltage.
SHP, SHD: These puises are used to sample the CCD out-
put signal.
This puise is used to clamp the optical black
level of the CCD output signal.
CCD driving ciock signals M1, H2, V1 to V4, and PG are
output to the CCD after passing through the drive circuit
consisting of IC3, ICS and IC6.

CLP1;
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SECTION 3
ALIGNMENT

s Csciilosczpe ! the pattern box is unavailasle] -
» Waveform monitor * 100-W buib

¢ 3/W monitor « ¢ Variable voltage trarsiormer

+ Cigital voitmeter

¢ Power supply equioment: Junction Sox JB-77 (sold on

. the market), reguiated power supply unit

Tripod attachment: VCT-37 !sold on the market)

=i e Lens: Stancard VCL-16Y-M Iscid on the market)

.* Pattern bex: PTB-500 or PTR-100

ISCNY part No.: J-6028-140-A}

.

Crayscaie chanrt
(SCNY zant No.: J-6026-130-A)

VALK I )

* White window chart
Make 2 hole in black caper as shown

F in the figure.

2

1 3

[N 4 —
ii) A
N e 2

! bl ol
1 ) nEl [ SR

Vertical A:8:C = 4.5:1:4.§
- 'y

morizontal JEF 4.5:1 4.9

XC-77 (UC) 3-1




Step 2: Connection diagram
|Connection method 1]
Reguiated power

Supply unit
(« 12V, 14)

= jol o8
Pattern dox =~ OC IN/SYNC ouT

- =
PTB-500 or =
P18.100 ,’: gl xc.77 | vioeo our

Waveiorm monitor
WFM)

—

B/W monitor

s st

o 0o
%n

g +i2v Connec: them 10 tre
"8 POwer supply unit

-
P d

-
- /’
<-' 1.562-356-00 g XC.77
DC IN/SYNC cannecior

Round connector plug
(Fy 12P

WIRING SIDE

3.2 xC-77 1Ll



3-2. OVERALL ADJUSTMENT

Step 1: v suB {field) adjustment

* Caution

l

Do not make this adjustment exceot when

the CCD is replaced.

* Setting

f

fl ~€asunrg iNstrurment

Digital voltmeter

* Prenaration

PR-89 BOARD(Component Sice)

* Acdjustment procedure

1. Test Point; TP3 (GND:TP1)/PR-88 board
Adj. Point: 0 RV10/PR-89 board

Scec.: When using 2 new CCD, adjust the V SUB
voitage so that the specification written in

the back of the CCD is satisfied.

' o83

L

re=

@lom ] 2
[

Lo [T

(Comoorerm Swie )

R e L1 T I

XC-77 (uc)




Step 3: Coupling noise elimination adjustment

¢ Setuing
! Lens uis Close it with the lens cap
] -
irigger TP4(HD)/MB.
! Measuring instrument Oscilloscope ‘ /IMB-136 boara
e,
e Adjustment procedure
i
Test Point/PR-89 board Adj. Point Spec. :
!
- |
P2IGND:TPY {OCV1/SH-27 board | A shail be minimized. !
: | inimized 0 CV1/SH.27 sourg 5

. en - |
QDia D DI
P 1 082 !
AP A Rv2 1, RV3 ayy °120
".:; “ L?g’ °3° !
e . . - !
-eThy .,40 v
- E IC1 i
Y T IC2 - 980, :
.- ' \
[ P2 te0. :
Ts. ® ave RVS Iy ;
- - ¢\ 2 X
- o] cec.|
xe 190! agn !
";‘ 1 myn Y
* oo RVS too .
~:1 cad -
[t @1y Avio
o
';-_- PR- 289 B80QARD iComponent Swe }
<
P

- PR-89 boerd

(4 - -
oMt . : - r O
2t ! O

; Jo|

- 2

hat v Y]
™\ $6.119 bosrd

TP4{HDI/MB-37 boasrd

TR

Ti o

B

FORE

R e TS 1
a

xC-77 NJ

s (U




* Adjustment procedure

Test Point

VIOEQ QUT terminal

1ORVE/PR-89 board A=8.0 =+ 0.5 IRE

l 3 ALIGHMENT

RVYO

xl l jA\GC

QL e

N O.l

:

ﬂ

"Ol 9 "
=% g

e d

PR-89 BOARD {Componant Swe)
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Step 8: GAIN adjustment

* Sering
H .
‘ Cboject ‘ Grayscaie chart Measurlng Oscilloscope ang wave.
{ 4 instrument form monitor
‘ 4.,
\‘

* Preparation

—_—

i
] 1. Solcer parts A and C and remove the soider from parts B and D as shown in the figure.

A

* Adjustment procedure

1. Lens iris = Close it with the lens cap
2. Test point: VIDEQ OUT tarminal
Adj. Point: ORV11/PRBS board
Spec.: A= 7.0 = 0.5 IRE

3. Shoot the grayscaie chart, and place the camera
so that the chart frame touches the underscanned
picture frame on the monitor screen.

L

anDAcc Rva @ @»va
’ Pl
ren o=
00 e @ O
¢ n
ARv2 fer | Om ﬁ"_—l RV3 Rv7? °%0:
' Ce) 030"
W7 .
pag:
IC1 IC2 030
vz 060,
® nve avs 070
. ¢\ 2 .
$90 | pyy 0%0.
mag @wc 200
o, 0C.

©1Py RVW

PR-89 BOARD (Component Side)

Monitor screen

S———

G {Continued to next page)
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L) 2
|
R
3
]' Step 7: AGC adjustment
1
| * Setung .
. ,
. I Cject Gravscaie chart Measuring Cscilloscoce ang ways.
. ’ Instrument form monitor !
- " i
N T ——
* Presarauon
. ! Soicer part 8 and remove the solder from pary A 23 shown in the figure. ;
B ]
: ! A 3 !
. i ,
it | |
3 ] ;
'-‘-'1[ :
.5 4
S = !
™ z ! i
/ z i
. <: !

|
|

* Adjustment procedure

1. Shoot the grayscals chart, and place the camera
so that the picture frame of the chart touches the
underscanned picture frame on the monitor screen,

2. Test Point: TP2 IGND:TP1)/PR.89 board
Trigger: TP4(HDI/MB-136 board
Adj. Point: Lens irig l l
Spec.: A=2350 % 10 mv

Monitor screen

— ]

[ l l (14 L)
X fFix A Rva @ O V." o
r-s ros
N D1 T
3. Test Point: VIDEO OUT terminal @ ::: [fﬁ @ @ o‘;o
Adj. Point: ORVB/PR-89 board Rv2 & :ﬁ'" Rv3 Av? s 3n
Spec.: 8=100 + 5 IRE o 3.; ]
— o2 26z
® ayvs RV 51y
. v g2
QD i D1y
. bl Yoi

Q

s
853
N

;

Dr1P3 TRVIO -
PR-89 BOARD  (Component Side |
xC. 77 wCl
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Step 9: Gamma adjustment

* Setting

At
e
BT PR
Ctnane. o Vi & & ABL2%

| Objees Grayscale chart Measurmg Oscilloscope and wave-
I instrument form monitor

Lo
31 aodi

* Presaration

B

R

1. Solder parts 8 and D and remove the soicer from parts A and C as shown in the figure.

.
:
2

,I i ” 3 AU 1]

. U RS SN
e el PR M) dasoga v

St N i
1 . |
ESiA) 2 : i
ALY I .
‘f% I PR.£3 SBCARD(Component Sice) i
i |
v l 2. SetORVE/PR-89 on the PR-89 board to the mechanical center. i
{Front view]) [Top view}
fix AGC Rva Ave
[—l—] @ AN}
e el r-" €~
e @ =] 1} t 2 @ @ ot O:
4
EHRTS Avz R | oM [jj AVE vy P20,
' Ce3 030" !
L ) . H
' Sep: |
IC1 1IC2 030,
o2 060,
@ nave AvS . 870,
Bvis: Dy
0! oy 295
Q =2 O g
[OM 2] nwoh

PR~ 89 80ARD {Componemt S« )

G {Continued to next page)
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Step 10: White clip adjustment 2

-‘-;\ r
-l
8
:
- * Setung
=
© !
3 ,f ch G le ek Measuring '
ect rayscale chart : :
a :‘ ] Y instrument Waveform monitor (WF')
W ’ -
N
* Agjustment procedure

z Iz

532 i
2o

- P ‘ 1. Shoot the grayscale chart, and lace {he camera :

N 20O ; th ! |

2 33 ' 50 that the chart frame touches the uncerscanned Monitor screen :

° =3 f oicture frame on the monitor screen.

E ga { 2. Test Point:  VIDEO OUT terminal :

N on f Agy. Point: G RVE/PR-BY board [ I” ] ] :
g; ‘ Adusiment: Cpen the lens iris and adjust so that '
gs the VIDEQ OUT waveform clips at I
¢=.§ | 11§ = 2 IRE .
=m H
N i
-]
®
oE ’( '
ég ! rtxl I ‘Acc Ava @ @ﬂv-g ;
o3 | o

A QO tm D Qi
<] ' .
? vz KT 1oR [i] RV3 Rvy ti0
o ' Ce3 RN
2 115 « 2 IRE b )
| Deo
3 E IC IC2 cic.
m -
: 102 R Jein
@ @ nave RV S LRI R :
ﬂ D Qe o
' ce 1
m '
z 190 vy 2.
P »o0 | 2100 °
5 D =) Ome 00
c @1p3s RVIO
2 ;
:: PR~ 89 BOARD  (Componerw Side) :
=3
_ PR-89 board
| | lnl Z 0 | ]
| 11O i
'
"~ : O |
S v -7 Y- X = ol
A ]
\SG-‘IIS bosrd
TP4 (HD)/MB-37 dosrd
318 xess




3. Tesw/Point: VIDEOQ OUT terminal
Agj. Point: RV 1/PR-89 board

Spec.: 8=100 = 10 IRE LD —
. Fix age Rvae @ @Wg

‘ re-= 7P|@

QDO o D ZE0

RV2 Ry | OR Dj Aav3 "3 d204

LC!’ Dlo:

CAO.

IC1 ‘

Ic2 2s0.

a2 240,

@ nve mvs :

~-n 1 2 tro,

W7

0! ayn te0

' .

D "2 D e

@71P3 RV \.J

PR~ E9 DBOARD  (Componem S.ga )
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